// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/edk/embedder/embedder.h"
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <utility>
#include "base/bind.h"
#include "base/command_line.h"
#include "base/files/file.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/shared_memory.h"
#include "base/message_loop/message_loop.h"
#include "base/process/process_handle.h"
#include "base/synchronization/waitable_event.h"
#include "base/test/test_timeouts.h"
#include "mojo/edk/embedder/platform_channel_pair.h"
#include "mojo/edk/embedder/test_embedder.h"
#include "mojo/edk/system/test_utils.h"
#include "mojo/edk/test/mojo_test_base.h"
#include "mojo/public/c/system/core.h"
#include "mojo/public/cpp/system/handle.h"
#include "mojo/public/cpp/system/message_pipe.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace mojo {
namespace edk {
namespace {
const MojoHandleSignals kSignalReadadableWritable =
MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE;
const MojoHandleSignals kSignalAll = MOJO_HANDLE_SIGNAL_READABLE |
MOJO_HANDLE_SIGNAL_WRITABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED;
// The multiprocess tests that use these don't compile on iOS.
#if !defined(OS_IOS)
const char kHelloWorld[] = "hello world";
const char kByeWorld[] = "bye world";
#endif
using EmbedderTest = test::MojoTestBase;
TEST_F(EmbedderTest, ChannelBasic) {
MojoHandle server_mp, client_mp;
CreateMessagePipe(&server_mp, &client_mp);
const std::string kHello = "hello";
// We can write to a message pipe handle immediately.
WriteMessage(server_mp, kHello);
EXPECT_EQ(kHello, ReadMessage(client_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp));
}
// Test sending a MP which has read messages out of the OS pipe but which have
// not been consumed using MojoReadMessage yet.
TEST_F(EmbedderTest, SendReadableMessagePipe) {
MojoHandle server_mp, client_mp;
CreateMessagePipe(&server_mp, &client_mp);
MojoHandle server_mp2, client_mp2;
CreateMessagePipe(&server_mp2, &client_mp2);
// Write to server2 and wait for client2 to be readable before sending it.
// client2's MessagePipeDispatcher will have the message below in its
// message_queue_. For extra measures, also verify that this pending message
// can contain a message pipe.
MojoHandle server_mp3, client_mp3;
CreateMessagePipe(&server_mp3, &client_mp3);
const std::string kHello = "hello";
WriteMessageWithHandles(server_mp2, kHello, &client_mp3, 1);
MojoHandleSignalsState state;
ASSERT_EQ(MOJO_RESULT_OK, MojoWait(client_mp2, MOJO_HANDLE_SIGNAL_READABLE,
MOJO_DEADLINE_INDEFINITE, &state));
ASSERT_EQ(kSignalReadadableWritable, state.satisfied_signals);
ASSERT_EQ(kSignalAll, state.satisfiable_signals);
// Now send client2
WriteMessageWithHandles(server_mp, kHello, &client_mp2, 1);
MojoHandle port;
std::string message = ReadMessageWithHandles(client_mp, &port, 1);
EXPECT_EQ(kHello, message);
client_mp2 = port;
message = ReadMessageWithHandles(client_mp2, &client_mp3, 1);
EXPECT_EQ(kHello, message);
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp3));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp3));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp2));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp2));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp));
}
// Verifies that a MP with pending messages to be written can be sent and the
// pending messages aren't dropped.
TEST_F(EmbedderTest, SendMessagePipeWithWriteQueue) {
MojoHandle server_mp, client_mp;
CreateMessagePipe(&server_mp, &client_mp);
MojoHandle server_mp2, client_mp2;
CreateMessagePipe(&server_mp2, &client_mp2);
static const size_t kNumMessages = 1001;
for (size_t i = 1; i <= kNumMessages; i++)
WriteMessage(client_mp2, std::string(i, 'A' + (i % 26)));
// Now send client2.
WriteMessageWithHandles(server_mp, "hey", &client_mp2, 1);
client_mp2 = MOJO_HANDLE_INVALID;
// Read client2 just so we can close it later.
EXPECT_EQ("hey", ReadMessageWithHandles(client_mp, &client_mp2, 1));
EXPECT_NE(MOJO_HANDLE_INVALID, client_mp2);
// Now verify that all the messages that were written were sent correctly.
for (size_t i = 1; i <= kNumMessages; i++)
ASSERT_EQ(std::string(i, 'A' + (i % 26)), ReadMessage(server_mp2));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp2));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp2));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp));
}
TEST_F(EmbedderTest, ChannelsHandlePassing) {
MojoHandle server_mp, client_mp;
CreateMessagePipe(&server_mp, &client_mp);
EXPECT_NE(server_mp, MOJO_HANDLE_INVALID);
EXPECT_NE(client_mp, MOJO_HANDLE_INVALID);
MojoHandle h0, h1;
CreateMessagePipe(&h0, &h1);
// Write a message to |h0| (attaching nothing).
const std::string kHello = "hello";
WriteMessage(h0, kHello);
// Write one message to |server_mp|, attaching |h1|.
const std::string kWorld = "world!!!";
WriteMessageWithHandles(server_mp, kWorld, &h1, 1);
h1 = MOJO_HANDLE_INVALID;
// Write another message to |h0|.
const std::string kFoo = "foo";
WriteMessage(h0, kFoo);
// Wait for |client_mp| to become readable and read a message from it.
EXPECT_EQ(kWorld, ReadMessageWithHandles(client_mp, &h1, 1));
EXPECT_NE(h1, MOJO_HANDLE_INVALID);
// Wait for |h1| to become readable and read a message from it.
EXPECT_EQ(kHello, ReadMessage(h1));
// Wait for |h1| to become readable (again) and read its second message.
EXPECT_EQ(kFoo, ReadMessage(h1));
// Write a message to |h1|.
const std::string kBarBaz = "barbaz";
WriteMessage(h1, kBarBaz);
// Wait for |h0| to become readable and read a message from it.
EXPECT_EQ(kBarBaz, ReadMessage(h0));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(h0));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(h1));
}
TEST_F(EmbedderTest, PipeSetup) {
std::string child_token = GenerateRandomToken();
std::string pipe_token = GenerateRandomToken();
ScopedMessagePipeHandle parent_mp =
CreateParentMessagePipe(pipe_token, child_token);
ScopedMessagePipeHandle child_mp =
CreateChildMessagePipe(pipe_token);
const std::string kHello = "hello";
WriteMessage(parent_mp.get().value(), kHello);
EXPECT_EQ(kHello, ReadMessage(child_mp.get().value()));
}
TEST_F(EmbedderTest, PipeSetup_LaunchDeath) {
PlatformChannelPair pair;
std::string child_token = GenerateRandomToken();
std::string pipe_token = GenerateRandomToken();
ScopedMessagePipeHandle parent_mp =
CreateParentMessagePipe(pipe_token, child_token);
ChildProcessLaunched(base::GetCurrentProcessHandle(), pair.PassServerHandle(),
child_token);
// Close the remote end, simulating child death before the child connects to
// the reserved port.
ignore_result(pair.PassClientHandle());
EXPECT_EQ(MOJO_RESULT_OK, MojoWait(parent_mp.get().value(),
MOJO_HANDLE_SIGNAL_PEER_CLOSED,
MOJO_DEADLINE_INDEFINITE,
nullptr));
}
TEST_F(EmbedderTest, PipeSetup_LaunchFailure) {
PlatformChannelPair pair;
std::string child_token = GenerateRandomToken();
std::string pipe_token = GenerateRandomToken();
ScopedMessagePipeHandle parent_mp =
CreateParentMessagePipe(pipe_token, child_token);
ChildProcessLaunchFailed(child_token);
EXPECT_EQ(MOJO_RESULT_OK, MojoWait(parent_mp.get().value(),
MOJO_HANDLE_SIGNAL_PEER_CLOSED,
MOJO_DEADLINE_INDEFINITE,
nullptr));
}
// The sequence of messages sent is:
// server_mp client_mp mp0 mp1 mp2 mp3
// 1. "hello"
// 2. "world!"
// 3. "FOO"
// 4. "Bar"+mp1
// 5. (close)
// 6. (close)
// 7. "baz"
// 8. (closed)
// 9. "quux"+mp2
// 10. (close)
// 11. (wait/cl.)
// 12. (wait/cl.)
#if !defined(OS_IOS)
TEST_F(EmbedderTest, MultiprocessChannels) {
RUN_CHILD_ON_PIPE(MultiprocessChannelsClient, server_mp)
// 1. Write a message to |server_mp| (attaching nothing).
WriteMessage(server_mp, "hello");
// 2. Read a message from |server_mp|.
EXPECT_EQ("world!", ReadMessage(server_mp));
// 3. Create a new message pipe (endpoints |mp0| and |mp1|).
MojoHandle mp0, mp1;
CreateMessagePipe(&mp0, &mp1);
// 4. Write something to |mp0|.
WriteMessage(mp0, "FOO");
// 5. Write a message to |server_mp|, attaching |mp1|.
WriteMessageWithHandles(server_mp, "Bar", &mp1, 1);
mp1 = MOJO_HANDLE_INVALID;
// 6. Read a message from |mp0|, which should have |mp2| attached.
MojoHandle mp2 = MOJO_HANDLE_INVALID;
EXPECT_EQ("quux", ReadMessageWithHandles(mp0, &mp2, 1));
// 7. Read a message from |mp2|.
EXPECT_EQ("baz", ReadMessage(mp2));
// 8. Close |mp0|.
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp0));
// 9. Tell the client to quit.
WriteMessage(server_mp, "quit");
// 10. Wait on |mp2| (which should eventually fail) and then close it.
MojoHandleSignalsState state;
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
MojoWait(mp2, MOJO_HANDLE_SIGNAL_READABLE,
MOJO_DEADLINE_INDEFINITE,
&state));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfiable_signals);
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp2));
END_CHILD()
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessChannelsClient, EmbedderTest,
client_mp) {
// 1. Read the first message from |client_mp|.
EXPECT_EQ("hello", ReadMessage(client_mp));
// 2. Write a message to |client_mp| (attaching nothing).
WriteMessage(client_mp, "world!");
// 4. Read a message from |client_mp|, which should have |mp1| attached.
MojoHandle mp1;
EXPECT_EQ("Bar", ReadMessageWithHandles(client_mp, &mp1, 1));
// 5. Create a new message pipe (endpoints |mp2| and |mp3|).
MojoHandle mp2, mp3;
CreateMessagePipe(&mp2, &mp3);
// 6. Write a message to |mp3|.
WriteMessage(mp3, "baz");
// 7. Close |mp3|.
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp3));
// 8. Write a message to |mp1|, attaching |mp2|.
WriteMessageWithHandles(mp1, "quux", &mp2, 1);
mp2 = MOJO_HANDLE_INVALID;
// 9. Read a message from |mp1|.
EXPECT_EQ("FOO", ReadMessage(mp1));
EXPECT_EQ("quit", ReadMessage(client_mp));
// 10. Wait on |mp1| (which should eventually fail) and then close it.
MojoHandleSignalsState state;
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
MojoWait(mp1, MOJO_HANDLE_SIGNAL_READABLE,
MOJO_DEADLINE_INDEFINITE, &state));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfiable_signals);
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp1));
}
TEST_F(EmbedderTest, MultiprocessBaseSharedMemory) {
RUN_CHILD_ON_PIPE(MultiprocessSharedMemoryClient, server_mp)
// 1. Create a base::SharedMemory object and create a mojo shared buffer
// from it.
base::SharedMemoryCreateOptions options;
options.size = 123;
base::SharedMemory shared_memory;
ASSERT_TRUE(shared_memory.Create(options));
base::SharedMemoryHandle shm_handle = base::SharedMemory::DuplicateHandle(
shared_memory.handle());
MojoHandle sb1;
ASSERT_EQ(MOJO_RESULT_OK,
CreateSharedBufferWrapper(shm_handle, 123, false, &sb1));
// 2. Map |sb1| and write something into it.
char* buffer = nullptr;
ASSERT_EQ(MOJO_RESULT_OK,
MojoMapBuffer(sb1, 0, 123, reinterpret_cast<void**>(&buffer), 0));
ASSERT_TRUE(buffer);
memcpy(buffer, kHelloWorld, sizeof(kHelloWorld));
// 3. Duplicate |sb1| into |sb2| and pass to |server_mp|.
MojoHandle sb2 = MOJO_HANDLE_INVALID;
EXPECT_EQ(MOJO_RESULT_OK, MojoDuplicateBufferHandle(sb1, 0, &sb2));
EXPECT_NE(MOJO_HANDLE_INVALID, sb2);
WriteMessageWithHandles(server_mp, "hello", &sb2, 1);
// 4. Read a message from |server_mp|.
EXPECT_EQ("bye", ReadMessage(server_mp));
// 5. Expect that the contents of the shared buffer have changed.
EXPECT_EQ(kByeWorld, std::string(buffer));
// 6. Map the original base::SharedMemory and expect it contains the
// expected value.
ASSERT_TRUE(shared_memory.Map(123));
EXPECT_EQ(kByeWorld,
std::string(static_cast<char*>(shared_memory.memory())));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(sb1));
END_CHILD()
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessSharedMemoryClient, EmbedderTest,
client_mp) {
// 1. Read the first message from |client_mp|, which should have |sb1| which
// should be a shared buffer handle.
MojoHandle sb1;
EXPECT_EQ("hello", ReadMessageWithHandles(client_mp, &sb1, 1));
// 2. Map |sb1|.
char* buffer = nullptr;
ASSERT_EQ(MOJO_RESULT_OK,
MojoMapBuffer(sb1, 0, 123, reinterpret_cast<void**>(&buffer), 0));
ASSERT_TRUE(buffer);
// 3. Ensure |buffer| contains the values we expect.
EXPECT_EQ(kHelloWorld, std::string(buffer));
// 4. Write into |buffer| and send a message back.
memcpy(buffer, kByeWorld, sizeof(kByeWorld));
WriteMessage(client_mp, "bye");
// 5. Extract the shared memory handle and ensure we can map it and read the
// contents.
base::SharedMemoryHandle shm_handle;
ASSERT_EQ(MOJO_RESULT_OK,
PassSharedMemoryHandle(sb1, &shm_handle, nullptr, nullptr));
base::SharedMemory shared_memory(shm_handle, false);
ASSERT_TRUE(shared_memory.Map(123));
EXPECT_NE(buffer, shared_memory.memory());
EXPECT_EQ(kByeWorld, std::string(static_cast<char*>(shared_memory.memory())));
// 6. Close |sb1|. Should fail because |PassSharedMemoryHandle()| should have
// closed the handle.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(sb1));
}
#if defined(OS_MACOSX) && !defined(OS_IOS)
TEST_F(EmbedderTest, MultiprocessMachSharedMemory) {
RUN_CHILD_ON_PIPE(MultiprocessSharedMemoryClient, server_mp)
// 1. Create a Mach base::SharedMemory object and create a mojo shared
// buffer from it.
base::SharedMemoryCreateOptions options;
options.size = 123;
base::SharedMemory shared_memory;
ASSERT_TRUE(shared_memory.Create(options));
base::SharedMemoryHandle shm_handle = base::SharedMemory::DuplicateHandle(
shared_memory.handle());
MojoHandle sb1;
ASSERT_EQ(MOJO_RESULT_OK,
CreateSharedBufferWrapper(shm_handle, 123, false, &sb1));
// 2. Map |sb1| and write something into it.
char* buffer = nullptr;
ASSERT_EQ(MOJO_RESULT_OK,
MojoMapBuffer(sb1, 0, 123, reinterpret_cast<void**>(&buffer), 0));
ASSERT_TRUE(buffer);
memcpy(buffer, kHelloWorld, sizeof(kHelloWorld));
// 3. Duplicate |sb1| into |sb2| and pass to |server_mp|.
MojoHandle sb2 = MOJO_HANDLE_INVALID;
EXPECT_EQ(MOJO_RESULT_OK, MojoDuplicateBufferHandle(sb1, 0, &sb2));
EXPECT_NE(MOJO_HANDLE_INVALID, sb2);
WriteMessageWithHandles(server_mp, "hello", &sb2, 1);
// 4. Read a message from |server_mp|.
EXPECT_EQ("bye", ReadMessage(server_mp));
// 5. Expect that the contents of the shared buffer have changed.
EXPECT_EQ(kByeWorld, std::string(buffer));
// 6. Map the original base::SharedMemory and expect it contains the
// expected value.
ASSERT_TRUE(shared_memory.Map(123));
EXPECT_EQ(kByeWorld,
std::string(static_cast<char*>(shared_memory.memory())));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(sb1));
END_CHILD()
}
enum class HandleType {
POSIX,
MACH,
MACH_NULL,
};
const HandleType kTestHandleTypes[] = {
HandleType::MACH,
HandleType::MACH_NULL,
HandleType::POSIX,
HandleType::POSIX,
HandleType::MACH,
};
// Test that we can mix file descriptors and mach port handles.
TEST_F(EmbedderTest, MultiprocessMixMachAndFds) {
const size_t kShmSize = 1234;
RUN_CHILD_ON_PIPE(MultiprocessMixMachAndFdsClient, server_mp)
// 1. Create fds or Mach objects and mojo handles from them.
MojoHandle platform_handles[arraysize(kTestHandleTypes)];
for (size_t i = 0; i < arraysize(kTestHandleTypes); i++) {
const auto type = kTestHandleTypes[i];
ScopedPlatformHandle scoped_handle;
if (type == HandleType::POSIX) {
// The easiest source of fds is opening /dev/null.
base::File file(base::FilePath("/dev/null"),
base::File::FLAG_OPEN | base::File::FLAG_WRITE);
ASSERT_TRUE(file.IsValid());
scoped_handle.reset(PlatformHandle(file.TakePlatformFile()));
EXPECT_EQ(PlatformHandle::Type::POSIX, scoped_handle.get().type);
} else if (type == HandleType::MACH_NULL) {
scoped_handle.reset(PlatformHandle(
static_cast<mach_port_t>(MACH_PORT_NULL)));
EXPECT_EQ(PlatformHandle::Type::MACH, scoped_handle.get().type);
} else {
base::SharedMemoryCreateOptions options;
options.size = kShmSize;
base::SharedMemory shared_memory;
ASSERT_TRUE(shared_memory.Create(options));
base::SharedMemoryHandle shm_handle =
base::SharedMemory::DuplicateHandle(shared_memory.handle());
scoped_handle.reset(PlatformHandle(shm_handle.GetMemoryObject()));
EXPECT_EQ(PlatformHandle::Type::MACH, scoped_handle.get().type);
}
ASSERT_EQ(MOJO_RESULT_OK, CreatePlatformHandleWrapper(
std::move(scoped_handle), platform_handles + i));
}
// 2. Send all the handles to the child.
WriteMessageWithHandles(server_mp, "hello", platform_handles,
arraysize(kTestHandleTypes));
// 3. Read a message from |server_mp|.
EXPECT_EQ("bye", ReadMessage(server_mp));
END_CHILD()
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessMixMachAndFdsClient, EmbedderTest,
client_mp) {
const int kNumHandles = arraysize(kTestHandleTypes);
MojoHandle platform_handles[kNumHandles];
// 1. Read from |client_mp|, which should have a message containing
// |kNumHandles| handles.
EXPECT_EQ("hello",
ReadMessageWithHandles(client_mp, platform_handles, kNumHandles));
// 2. Extract each handle, and verify the type.
for (int i = 0; i < kNumHandles; i++) {
const auto type = kTestHandleTypes[i];
ScopedPlatformHandle scoped_handle;
ASSERT_EQ(MOJO_RESULT_OK,
PassWrappedPlatformHandle(platform_handles[i], &scoped_handle));
if (type == HandleType::POSIX) {
EXPECT_NE(0, scoped_handle.get().handle);
EXPECT_EQ(PlatformHandle::Type::POSIX, scoped_handle.get().type);
} else if (type == HandleType::MACH_NULL) {
EXPECT_EQ(static_cast<mach_port_t>(MACH_PORT_NULL),
scoped_handle.get().port);
EXPECT_EQ(PlatformHandle::Type::MACH, scoped_handle.get().type);
} else {
EXPECT_NE(static_cast<mach_port_t>(MACH_PORT_NULL),
scoped_handle.get().port);
EXPECT_EQ(PlatformHandle::Type::MACH, scoped_handle.get().type);
}
}
// 3. Say bye!
WriteMessage(client_mp, "bye");
}
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
// TODO(vtl): Test immediate write & close.
// TODO(vtl): Test broken-connection cases.
#endif // !defined(OS_IOS)
} // namespace
} // namespace edk
} // namespace mojo