// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "mojo/edk/embedder/embedder.h" #include <stddef.h> #include <stdint.h> #include <string.h> #include <utility> #include "base/bind.h" #include "base/command_line.h" #include "base/files/file.h" #include "base/logging.h" #include "base/macros.h" #include "base/memory/shared_memory.h" #include "base/message_loop/message_loop.h" #include "base/process/process_handle.h" #include "base/synchronization/waitable_event.h" #include "base/test/test_timeouts.h" #include "mojo/edk/embedder/platform_channel_pair.h" #include "mojo/edk/embedder/test_embedder.h" #include "mojo/edk/system/test_utils.h" #include "mojo/edk/test/mojo_test_base.h" #include "mojo/public/c/system/core.h" #include "mojo/public/cpp/system/handle.h" #include "mojo/public/cpp/system/message_pipe.h" #include "testing/gtest/include/gtest/gtest.h" namespace mojo { namespace edk { namespace { const MojoHandleSignals kSignalReadadableWritable = MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE; const MojoHandleSignals kSignalAll = MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED; // The multiprocess tests that use these don't compile on iOS. #if !defined(OS_IOS) const char kHelloWorld[] = "hello world"; const char kByeWorld[] = "bye world"; #endif using EmbedderTest = test::MojoTestBase; TEST_F(EmbedderTest, ChannelBasic) { MojoHandle server_mp, client_mp; CreateMessagePipe(&server_mp, &client_mp); const std::string kHello = "hello"; // We can write to a message pipe handle immediately. WriteMessage(server_mp, kHello); EXPECT_EQ(kHello, ReadMessage(client_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp)); } // Test sending a MP which has read messages out of the OS pipe but which have // not been consumed using MojoReadMessage yet. TEST_F(EmbedderTest, SendReadableMessagePipe) { MojoHandle server_mp, client_mp; CreateMessagePipe(&server_mp, &client_mp); MojoHandle server_mp2, client_mp2; CreateMessagePipe(&server_mp2, &client_mp2); // Write to server2 and wait for client2 to be readable before sending it. // client2's MessagePipeDispatcher will have the message below in its // message_queue_. For extra measures, also verify that this pending message // can contain a message pipe. MojoHandle server_mp3, client_mp3; CreateMessagePipe(&server_mp3, &client_mp3); const std::string kHello = "hello"; WriteMessageWithHandles(server_mp2, kHello, &client_mp3, 1); MojoHandleSignalsState state; ASSERT_EQ(MOJO_RESULT_OK, MojoWait(client_mp2, MOJO_HANDLE_SIGNAL_READABLE, MOJO_DEADLINE_INDEFINITE, &state)); ASSERT_EQ(kSignalReadadableWritable, state.satisfied_signals); ASSERT_EQ(kSignalAll, state.satisfiable_signals); // Now send client2 WriteMessageWithHandles(server_mp, kHello, &client_mp2, 1); MojoHandle port; std::string message = ReadMessageWithHandles(client_mp, &port, 1); EXPECT_EQ(kHello, message); client_mp2 = port; message = ReadMessageWithHandles(client_mp2, &client_mp3, 1); EXPECT_EQ(kHello, message); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp3)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp3)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp2)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp2)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp)); } // Verifies that a MP with pending messages to be written can be sent and the // pending messages aren't dropped. TEST_F(EmbedderTest, SendMessagePipeWithWriteQueue) { MojoHandle server_mp, client_mp; CreateMessagePipe(&server_mp, &client_mp); MojoHandle server_mp2, client_mp2; CreateMessagePipe(&server_mp2, &client_mp2); static const size_t kNumMessages = 1001; for (size_t i = 1; i <= kNumMessages; i++) WriteMessage(client_mp2, std::string(i, 'A' + (i % 26))); // Now send client2. WriteMessageWithHandles(server_mp, "hey", &client_mp2, 1); client_mp2 = MOJO_HANDLE_INVALID; // Read client2 just so we can close it later. EXPECT_EQ("hey", ReadMessageWithHandles(client_mp, &client_mp2, 1)); EXPECT_NE(MOJO_HANDLE_INVALID, client_mp2); // Now verify that all the messages that were written were sent correctly. for (size_t i = 1; i <= kNumMessages; i++) ASSERT_EQ(std::string(i, 'A' + (i % 26)), ReadMessage(server_mp2)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp2)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp2)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp)); } TEST_F(EmbedderTest, ChannelsHandlePassing) { MojoHandle server_mp, client_mp; CreateMessagePipe(&server_mp, &client_mp); EXPECT_NE(server_mp, MOJO_HANDLE_INVALID); EXPECT_NE(client_mp, MOJO_HANDLE_INVALID); MojoHandle h0, h1; CreateMessagePipe(&h0, &h1); // Write a message to |h0| (attaching nothing). const std::string kHello = "hello"; WriteMessage(h0, kHello); // Write one message to |server_mp|, attaching |h1|. const std::string kWorld = "world!!!"; WriteMessageWithHandles(server_mp, kWorld, &h1, 1); h1 = MOJO_HANDLE_INVALID; // Write another message to |h0|. const std::string kFoo = "foo"; WriteMessage(h0, kFoo); // Wait for |client_mp| to become readable and read a message from it. EXPECT_EQ(kWorld, ReadMessageWithHandles(client_mp, &h1, 1)); EXPECT_NE(h1, MOJO_HANDLE_INVALID); // Wait for |h1| to become readable and read a message from it. EXPECT_EQ(kHello, ReadMessage(h1)); // Wait for |h1| to become readable (again) and read its second message. EXPECT_EQ(kFoo, ReadMessage(h1)); // Write a message to |h1|. const std::string kBarBaz = "barbaz"; WriteMessage(h1, kBarBaz); // Wait for |h0| to become readable and read a message from it. EXPECT_EQ(kBarBaz, ReadMessage(h0)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(h0)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(h1)); } TEST_F(EmbedderTest, PipeSetup) { std::string child_token = GenerateRandomToken(); std::string pipe_token = GenerateRandomToken(); ScopedMessagePipeHandle parent_mp = CreateParentMessagePipe(pipe_token, child_token); ScopedMessagePipeHandle child_mp = CreateChildMessagePipe(pipe_token); const std::string kHello = "hello"; WriteMessage(parent_mp.get().value(), kHello); EXPECT_EQ(kHello, ReadMessage(child_mp.get().value())); } TEST_F(EmbedderTest, PipeSetup_LaunchDeath) { PlatformChannelPair pair; std::string child_token = GenerateRandomToken(); std::string pipe_token = GenerateRandomToken(); ScopedMessagePipeHandle parent_mp = CreateParentMessagePipe(pipe_token, child_token); ChildProcessLaunched(base::GetCurrentProcessHandle(), pair.PassServerHandle(), child_token); // Close the remote end, simulating child death before the child connects to // the reserved port. ignore_result(pair.PassClientHandle()); EXPECT_EQ(MOJO_RESULT_OK, MojoWait(parent_mp.get().value(), MOJO_HANDLE_SIGNAL_PEER_CLOSED, MOJO_DEADLINE_INDEFINITE, nullptr)); } TEST_F(EmbedderTest, PipeSetup_LaunchFailure) { PlatformChannelPair pair; std::string child_token = GenerateRandomToken(); std::string pipe_token = GenerateRandomToken(); ScopedMessagePipeHandle parent_mp = CreateParentMessagePipe(pipe_token, child_token); ChildProcessLaunchFailed(child_token); EXPECT_EQ(MOJO_RESULT_OK, MojoWait(parent_mp.get().value(), MOJO_HANDLE_SIGNAL_PEER_CLOSED, MOJO_DEADLINE_INDEFINITE, nullptr)); } // The sequence of messages sent is: // server_mp client_mp mp0 mp1 mp2 mp3 // 1. "hello" // 2. "world!" // 3. "FOO" // 4. "Bar"+mp1 // 5. (close) // 6. (close) // 7. "baz" // 8. (closed) // 9. "quux"+mp2 // 10. (close) // 11. (wait/cl.) // 12. (wait/cl.) #if !defined(OS_IOS) TEST_F(EmbedderTest, MultiprocessChannels) { RUN_CHILD_ON_PIPE(MultiprocessChannelsClient, server_mp) // 1. Write a message to |server_mp| (attaching nothing). WriteMessage(server_mp, "hello"); // 2. Read a message from |server_mp|. EXPECT_EQ("world!", ReadMessage(server_mp)); // 3. Create a new message pipe (endpoints |mp0| and |mp1|). MojoHandle mp0, mp1; CreateMessagePipe(&mp0, &mp1); // 4. Write something to |mp0|. WriteMessage(mp0, "FOO"); // 5. Write a message to |server_mp|, attaching |mp1|. WriteMessageWithHandles(server_mp, "Bar", &mp1, 1); mp1 = MOJO_HANDLE_INVALID; // 6. Read a message from |mp0|, which should have |mp2| attached. MojoHandle mp2 = MOJO_HANDLE_INVALID; EXPECT_EQ("quux", ReadMessageWithHandles(mp0, &mp2, 1)); // 7. Read a message from |mp2|. EXPECT_EQ("baz", ReadMessage(mp2)); // 8. Close |mp0|. ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp0)); // 9. Tell the client to quit. WriteMessage(server_mp, "quit"); // 10. Wait on |mp2| (which should eventually fail) and then close it. MojoHandleSignalsState state; ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, MojoWait(mp2, MOJO_HANDLE_SIGNAL_READABLE, MOJO_DEADLINE_INDEFINITE, &state)); ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfied_signals); ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfiable_signals); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp2)); END_CHILD() } DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessChannelsClient, EmbedderTest, client_mp) { // 1. Read the first message from |client_mp|. EXPECT_EQ("hello", ReadMessage(client_mp)); // 2. Write a message to |client_mp| (attaching nothing). WriteMessage(client_mp, "world!"); // 4. Read a message from |client_mp|, which should have |mp1| attached. MojoHandle mp1; EXPECT_EQ("Bar", ReadMessageWithHandles(client_mp, &mp1, 1)); // 5. Create a new message pipe (endpoints |mp2| and |mp3|). MojoHandle mp2, mp3; CreateMessagePipe(&mp2, &mp3); // 6. Write a message to |mp3|. WriteMessage(mp3, "baz"); // 7. Close |mp3|. ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp3)); // 8. Write a message to |mp1|, attaching |mp2|. WriteMessageWithHandles(mp1, "quux", &mp2, 1); mp2 = MOJO_HANDLE_INVALID; // 9. Read a message from |mp1|. EXPECT_EQ("FOO", ReadMessage(mp1)); EXPECT_EQ("quit", ReadMessage(client_mp)); // 10. Wait on |mp1| (which should eventually fail) and then close it. MojoHandleSignalsState state; ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, MojoWait(mp1, MOJO_HANDLE_SIGNAL_READABLE, MOJO_DEADLINE_INDEFINITE, &state)); ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfied_signals); ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfiable_signals); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp1)); } TEST_F(EmbedderTest, MultiprocessBaseSharedMemory) { RUN_CHILD_ON_PIPE(MultiprocessSharedMemoryClient, server_mp) // 1. Create a base::SharedMemory object and create a mojo shared buffer // from it. base::SharedMemoryCreateOptions options; options.size = 123; base::SharedMemory shared_memory; ASSERT_TRUE(shared_memory.Create(options)); base::SharedMemoryHandle shm_handle = base::SharedMemory::DuplicateHandle( shared_memory.handle()); MojoHandle sb1; ASSERT_EQ(MOJO_RESULT_OK, CreateSharedBufferWrapper(shm_handle, 123, false, &sb1)); // 2. Map |sb1| and write something into it. char* buffer = nullptr; ASSERT_EQ(MOJO_RESULT_OK, MojoMapBuffer(sb1, 0, 123, reinterpret_cast<void**>(&buffer), 0)); ASSERT_TRUE(buffer); memcpy(buffer, kHelloWorld, sizeof(kHelloWorld)); // 3. Duplicate |sb1| into |sb2| and pass to |server_mp|. MojoHandle sb2 = MOJO_HANDLE_INVALID; EXPECT_EQ(MOJO_RESULT_OK, MojoDuplicateBufferHandle(sb1, 0, &sb2)); EXPECT_NE(MOJO_HANDLE_INVALID, sb2); WriteMessageWithHandles(server_mp, "hello", &sb2, 1); // 4. Read a message from |server_mp|. EXPECT_EQ("bye", ReadMessage(server_mp)); // 5. Expect that the contents of the shared buffer have changed. EXPECT_EQ(kByeWorld, std::string(buffer)); // 6. Map the original base::SharedMemory and expect it contains the // expected value. ASSERT_TRUE(shared_memory.Map(123)); EXPECT_EQ(kByeWorld, std::string(static_cast<char*>(shared_memory.memory()))); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(sb1)); END_CHILD() } DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessSharedMemoryClient, EmbedderTest, client_mp) { // 1. Read the first message from |client_mp|, which should have |sb1| which // should be a shared buffer handle. MojoHandle sb1; EXPECT_EQ("hello", ReadMessageWithHandles(client_mp, &sb1, 1)); // 2. Map |sb1|. char* buffer = nullptr; ASSERT_EQ(MOJO_RESULT_OK, MojoMapBuffer(sb1, 0, 123, reinterpret_cast<void**>(&buffer), 0)); ASSERT_TRUE(buffer); // 3. Ensure |buffer| contains the values we expect. EXPECT_EQ(kHelloWorld, std::string(buffer)); // 4. Write into |buffer| and send a message back. memcpy(buffer, kByeWorld, sizeof(kByeWorld)); WriteMessage(client_mp, "bye"); // 5. Extract the shared memory handle and ensure we can map it and read the // contents. base::SharedMemoryHandle shm_handle; ASSERT_EQ(MOJO_RESULT_OK, PassSharedMemoryHandle(sb1, &shm_handle, nullptr, nullptr)); base::SharedMemory shared_memory(shm_handle, false); ASSERT_TRUE(shared_memory.Map(123)); EXPECT_NE(buffer, shared_memory.memory()); EXPECT_EQ(kByeWorld, std::string(static_cast<char*>(shared_memory.memory()))); // 6. Close |sb1|. Should fail because |PassSharedMemoryHandle()| should have // closed the handle. EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(sb1)); } #if defined(OS_MACOSX) && !defined(OS_IOS) TEST_F(EmbedderTest, MultiprocessMachSharedMemory) { RUN_CHILD_ON_PIPE(MultiprocessSharedMemoryClient, server_mp) // 1. Create a Mach base::SharedMemory object and create a mojo shared // buffer from it. base::SharedMemoryCreateOptions options; options.size = 123; base::SharedMemory shared_memory; ASSERT_TRUE(shared_memory.Create(options)); base::SharedMemoryHandle shm_handle = base::SharedMemory::DuplicateHandle( shared_memory.handle()); MojoHandle sb1; ASSERT_EQ(MOJO_RESULT_OK, CreateSharedBufferWrapper(shm_handle, 123, false, &sb1)); // 2. Map |sb1| and write something into it. char* buffer = nullptr; ASSERT_EQ(MOJO_RESULT_OK, MojoMapBuffer(sb1, 0, 123, reinterpret_cast<void**>(&buffer), 0)); ASSERT_TRUE(buffer); memcpy(buffer, kHelloWorld, sizeof(kHelloWorld)); // 3. Duplicate |sb1| into |sb2| and pass to |server_mp|. MojoHandle sb2 = MOJO_HANDLE_INVALID; EXPECT_EQ(MOJO_RESULT_OK, MojoDuplicateBufferHandle(sb1, 0, &sb2)); EXPECT_NE(MOJO_HANDLE_INVALID, sb2); WriteMessageWithHandles(server_mp, "hello", &sb2, 1); // 4. Read a message from |server_mp|. EXPECT_EQ("bye", ReadMessage(server_mp)); // 5. Expect that the contents of the shared buffer have changed. EXPECT_EQ(kByeWorld, std::string(buffer)); // 6. Map the original base::SharedMemory and expect it contains the // expected value. ASSERT_TRUE(shared_memory.Map(123)); EXPECT_EQ(kByeWorld, std::string(static_cast<char*>(shared_memory.memory()))); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(sb1)); END_CHILD() } enum class HandleType { POSIX, MACH, MACH_NULL, }; const HandleType kTestHandleTypes[] = { HandleType::MACH, HandleType::MACH_NULL, HandleType::POSIX, HandleType::POSIX, HandleType::MACH, }; // Test that we can mix file descriptors and mach port handles. TEST_F(EmbedderTest, MultiprocessMixMachAndFds) { const size_t kShmSize = 1234; RUN_CHILD_ON_PIPE(MultiprocessMixMachAndFdsClient, server_mp) // 1. Create fds or Mach objects and mojo handles from them. MojoHandle platform_handles[arraysize(kTestHandleTypes)]; for (size_t i = 0; i < arraysize(kTestHandleTypes); i++) { const auto type = kTestHandleTypes[i]; ScopedPlatformHandle scoped_handle; if (type == HandleType::POSIX) { // The easiest source of fds is opening /dev/null. base::File file(base::FilePath("/dev/null"), base::File::FLAG_OPEN | base::File::FLAG_WRITE); ASSERT_TRUE(file.IsValid()); scoped_handle.reset(PlatformHandle(file.TakePlatformFile())); EXPECT_EQ(PlatformHandle::Type::POSIX, scoped_handle.get().type); } else if (type == HandleType::MACH_NULL) { scoped_handle.reset(PlatformHandle( static_cast<mach_port_t>(MACH_PORT_NULL))); EXPECT_EQ(PlatformHandle::Type::MACH, scoped_handle.get().type); } else { base::SharedMemoryCreateOptions options; options.size = kShmSize; base::SharedMemory shared_memory; ASSERT_TRUE(shared_memory.Create(options)); base::SharedMemoryHandle shm_handle = base::SharedMemory::DuplicateHandle(shared_memory.handle()); scoped_handle.reset(PlatformHandle(shm_handle.GetMemoryObject())); EXPECT_EQ(PlatformHandle::Type::MACH, scoped_handle.get().type); } ASSERT_EQ(MOJO_RESULT_OK, CreatePlatformHandleWrapper( std::move(scoped_handle), platform_handles + i)); } // 2. Send all the handles to the child. WriteMessageWithHandles(server_mp, "hello", platform_handles, arraysize(kTestHandleTypes)); // 3. Read a message from |server_mp|. EXPECT_EQ("bye", ReadMessage(server_mp)); END_CHILD() } DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessMixMachAndFdsClient, EmbedderTest, client_mp) { const int kNumHandles = arraysize(kTestHandleTypes); MojoHandle platform_handles[kNumHandles]; // 1. Read from |client_mp|, which should have a message containing // |kNumHandles| handles. EXPECT_EQ("hello", ReadMessageWithHandles(client_mp, platform_handles, kNumHandles)); // 2. Extract each handle, and verify the type. for (int i = 0; i < kNumHandles; i++) { const auto type = kTestHandleTypes[i]; ScopedPlatformHandle scoped_handle; ASSERT_EQ(MOJO_RESULT_OK, PassWrappedPlatformHandle(platform_handles[i], &scoped_handle)); if (type == HandleType::POSIX) { EXPECT_NE(0, scoped_handle.get().handle); EXPECT_EQ(PlatformHandle::Type::POSIX, scoped_handle.get().type); } else if (type == HandleType::MACH_NULL) { EXPECT_EQ(static_cast<mach_port_t>(MACH_PORT_NULL), scoped_handle.get().port); EXPECT_EQ(PlatformHandle::Type::MACH, scoped_handle.get().type); } else { EXPECT_NE(static_cast<mach_port_t>(MACH_PORT_NULL), scoped_handle.get().port); EXPECT_EQ(PlatformHandle::Type::MACH, scoped_handle.get().type); } } // 3. Say bye! WriteMessage(client_mp, "bye"); } #endif // defined(OS_MACOSX) && !defined(OS_IOS) // TODO(vtl): Test immediate write & close. // TODO(vtl): Test broken-connection cases. #endif // !defined(OS_IOS) } // namespace } // namespace edk } // namespace mojo