// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/trace_event/process_memory_dump.h"
#include <errno.h>
#include <vector>
#include "base/memory/ptr_util.h"
#include "base/process/process_metrics.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/heap_profiler_heap_dump_writer.h"
#include "base/trace_event/memory_infra_background_whitelist.h"
#include "base/trace_event/process_memory_totals.h"
#include "base/trace_event/trace_event_argument.h"
#include "build/build_config.h"
#if defined(OS_IOS)
#include <sys/sysctl.h>
#endif
#if defined(OS_POSIX)
#include <sys/mman.h>
#endif
#if defined(OS_WIN)
#include <Psapi.h>
#endif
namespace base {
namespace trace_event {
namespace {
const char kEdgeTypeOwnership[] = "ownership";
std::string GetSharedGlobalAllocatorDumpName(
const MemoryAllocatorDumpGuid& guid) {
return "global/" + guid.ToString();
}
#if defined(COUNT_RESIDENT_BYTES_SUPPORTED)
size_t GetSystemPageCount(size_t mapped_size, size_t page_size) {
return (mapped_size + page_size - 1) / page_size;
}
#endif
} // namespace
// static
bool ProcessMemoryDump::is_black_hole_non_fatal_for_testing_ = false;
#if defined(COUNT_RESIDENT_BYTES_SUPPORTED)
// static
size_t ProcessMemoryDump::GetSystemPageSize() {
#if defined(OS_IOS)
// On iOS, getpagesize() returns the user page sizes, but for allocating
// arrays for mincore(), kernel page sizes is needed. sysctlbyname() should
// be used for this. Refer to crbug.com/542671 and Apple rdar://23651782
int pagesize;
size_t pagesize_len;
int status = sysctlbyname("vm.pagesize", NULL, &pagesize_len, nullptr, 0);
if (!status && pagesize_len == sizeof(pagesize)) {
if (!sysctlbyname("vm.pagesize", &pagesize, &pagesize_len, nullptr, 0))
return pagesize;
}
LOG(ERROR) << "sysctlbyname(\"vm.pagesize\") failed.";
// Falls back to getpagesize() although it may be wrong in certain cases.
#endif // defined(OS_IOS)
return base::GetPageSize();
}
// static
size_t ProcessMemoryDump::CountResidentBytes(void* start_address,
size_t mapped_size) {
const size_t page_size = GetSystemPageSize();
const uintptr_t start_pointer = reinterpret_cast<uintptr_t>(start_address);
DCHECK_EQ(0u, start_pointer % page_size);
size_t offset = 0;
size_t total_resident_size = 0;
bool failure = false;
// An array as large as number of pages in memory segment needs to be passed
// to the query function. To avoid allocating a large array, the given block
// of memory is split into chunks of size |kMaxChunkSize|.
const size_t kMaxChunkSize = 8 * 1024 * 1024;
size_t max_vec_size =
GetSystemPageCount(std::min(mapped_size, kMaxChunkSize), page_size);
#if defined(OS_MACOSX) || defined(OS_IOS)
std::unique_ptr<char[]> vec(new char[max_vec_size]);
#elif defined(OS_WIN)
std::unique_ptr<PSAPI_WORKING_SET_EX_INFORMATION[]> vec(
new PSAPI_WORKING_SET_EX_INFORMATION[max_vec_size]);
#elif defined(OS_POSIX)
std::unique_ptr<unsigned char[]> vec(new unsigned char[max_vec_size]);
#endif
while (offset < mapped_size) {
uintptr_t chunk_start = (start_pointer + offset);
const size_t chunk_size = std::min(mapped_size - offset, kMaxChunkSize);
const size_t page_count = GetSystemPageCount(chunk_size, page_size);
size_t resident_page_count = 0;
#if defined(OS_MACOSX) || defined(OS_IOS)
// mincore in MAC does not fail with EAGAIN.
failure =
!!mincore(reinterpret_cast<void*>(chunk_start), chunk_size, vec.get());
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i] & MINCORE_INCORE ? 1 : 0;
#elif defined(OS_WIN)
for (size_t i = 0; i < page_count; i++) {
vec[i].VirtualAddress =
reinterpret_cast<void*>(chunk_start + i * page_size);
}
DWORD vec_size = static_cast<DWORD>(
page_count * sizeof(PSAPI_WORKING_SET_EX_INFORMATION));
failure = !QueryWorkingSetEx(GetCurrentProcess(), vec.get(), vec_size);
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i].VirtualAttributes.Valid;
#elif defined(OS_POSIX)
int error_counter = 0;
int result = 0;
// HANDLE_EINTR tries for 100 times. So following the same pattern.
do {
result =
mincore(reinterpret_cast<void*>(chunk_start), chunk_size, vec.get());
} while (result == -1 && errno == EAGAIN && error_counter++ < 100);
failure = !!result;
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i] & 1;
#endif
if (failure)
break;
total_resident_size += resident_page_count * page_size;
offset += kMaxChunkSize;
}
DCHECK(!failure);
if (failure) {
total_resident_size = 0;
LOG(ERROR) << "CountResidentBytes failed. The resident size is invalid";
}
return total_resident_size;
}
#endif // defined(COUNT_RESIDENT_BYTES_SUPPORTED)
ProcessMemoryDump::ProcessMemoryDump(
scoped_refptr<MemoryDumpSessionState> session_state,
const MemoryDumpArgs& dump_args)
: has_process_totals_(false),
has_process_mmaps_(false),
session_state_(std::move(session_state)),
dump_args_(dump_args) {}
ProcessMemoryDump::~ProcessMemoryDump() {}
MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump(
const std::string& absolute_name) {
return AddAllocatorDumpInternal(
WrapUnique(new MemoryAllocatorDump(absolute_name, this)));
}
MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump(
const std::string& absolute_name,
const MemoryAllocatorDumpGuid& guid) {
return AddAllocatorDumpInternal(
WrapUnique(new MemoryAllocatorDump(absolute_name, this, guid)));
}
MemoryAllocatorDump* ProcessMemoryDump::AddAllocatorDumpInternal(
std::unique_ptr<MemoryAllocatorDump> mad) {
// In background mode return the black hole dump, if invalid dump name is
// given.
if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND &&
!IsMemoryAllocatorDumpNameWhitelisted(mad->absolute_name())) {
return GetBlackHoleMad();
}
auto insertion_result = allocator_dumps_.insert(
std::make_pair(mad->absolute_name(), std::move(mad)));
MemoryAllocatorDump* inserted_mad = insertion_result.first->second.get();
DCHECK(insertion_result.second) << "Duplicate name: "
<< inserted_mad->absolute_name();
return inserted_mad;
}
MemoryAllocatorDump* ProcessMemoryDump::GetAllocatorDump(
const std::string& absolute_name) const {
auto it = allocator_dumps_.find(absolute_name);
if (it != allocator_dumps_.end())
return it->second.get();
if (black_hole_mad_)
return black_hole_mad_.get();
return nullptr;
}
MemoryAllocatorDump* ProcessMemoryDump::GetOrCreateAllocatorDump(
const std::string& absolute_name) {
MemoryAllocatorDump* mad = GetAllocatorDump(absolute_name);
return mad ? mad : CreateAllocatorDump(absolute_name);
}
MemoryAllocatorDump* ProcessMemoryDump::CreateSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) {
// Global dumps are disabled in background mode.
if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND)
return GetBlackHoleMad();
// A shared allocator dump can be shared within a process and the guid could
// have been created already.
MemoryAllocatorDump* mad = GetSharedGlobalAllocatorDump(guid);
if (mad) {
// The weak flag is cleared because this method should create a non-weak
// dump.
mad->clear_flags(MemoryAllocatorDump::Flags::WEAK);
return mad;
}
return CreateAllocatorDump(GetSharedGlobalAllocatorDumpName(guid), guid);
}
MemoryAllocatorDump* ProcessMemoryDump::CreateWeakSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) {
// Global dumps are disabled in background mode.
if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND)
return GetBlackHoleMad();
MemoryAllocatorDump* mad = GetSharedGlobalAllocatorDump(guid);
if (mad)
return mad;
mad = CreateAllocatorDump(GetSharedGlobalAllocatorDumpName(guid), guid);
mad->set_flags(MemoryAllocatorDump::Flags::WEAK);
return mad;
}
MemoryAllocatorDump* ProcessMemoryDump::GetSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) const {
return GetAllocatorDump(GetSharedGlobalAllocatorDumpName(guid));
}
void ProcessMemoryDump::DumpHeapUsage(
const base::hash_map<base::trace_event::AllocationContext,
base::trace_event::AllocationMetrics>& metrics_by_context,
base::trace_event::TraceEventMemoryOverhead& overhead,
const char* allocator_name) {
if (!metrics_by_context.empty()) {
DCHECK_EQ(0ul, heap_dumps_.count(allocator_name));
std::unique_ptr<TracedValue> heap_dump = ExportHeapDump(
metrics_by_context, *session_state());
heap_dumps_[allocator_name] = std::move(heap_dump);
}
std::string base_name = base::StringPrintf("tracing/heap_profiler_%s",
allocator_name);
overhead.DumpInto(base_name.c_str(), this);
}
void ProcessMemoryDump::Clear() {
if (has_process_totals_) {
process_totals_.Clear();
has_process_totals_ = false;
}
if (has_process_mmaps_) {
process_mmaps_.Clear();
has_process_mmaps_ = false;
}
allocator_dumps_.clear();
allocator_dumps_edges_.clear();
heap_dumps_.clear();
}
void ProcessMemoryDump::TakeAllDumpsFrom(ProcessMemoryDump* other) {
DCHECK(!other->has_process_totals() && !other->has_process_mmaps());
// Moves the ownership of all MemoryAllocatorDump(s) contained in |other|
// into this ProcessMemoryDump, checking for duplicates.
for (auto& it : other->allocator_dumps_)
AddAllocatorDumpInternal(std::move(it.second));
other->allocator_dumps_.clear();
// Move all the edges.
allocator_dumps_edges_.insert(allocator_dumps_edges_.end(),
other->allocator_dumps_edges_.begin(),
other->allocator_dumps_edges_.end());
other->allocator_dumps_edges_.clear();
for (auto& it : other->heap_dumps_) {
DCHECK_EQ(0ul, heap_dumps_.count(it.first));
heap_dumps_.insert(std::make_pair(it.first, std::move(it.second)));
}
other->heap_dumps_.clear();
}
void ProcessMemoryDump::AsValueInto(TracedValue* value) const {
if (has_process_totals_) {
value->BeginDictionary("process_totals");
process_totals_.AsValueInto(value);
value->EndDictionary();
}
if (has_process_mmaps_) {
value->BeginDictionary("process_mmaps");
process_mmaps_.AsValueInto(value);
value->EndDictionary();
}
if (allocator_dumps_.size() > 0) {
value->BeginDictionary("allocators");
for (const auto& allocator_dump_it : allocator_dumps_)
allocator_dump_it.second->AsValueInto(value);
value->EndDictionary();
}
if (heap_dumps_.size() > 0) {
value->BeginDictionary("heaps");
for (const auto& name_and_dump : heap_dumps_)
value->SetValueWithCopiedName(name_and_dump.first, *name_and_dump.second);
value->EndDictionary(); // "heaps"
}
value->BeginArray("allocators_graph");
for (const MemoryAllocatorDumpEdge& edge : allocator_dumps_edges_) {
value->BeginDictionary();
value->SetString("source", edge.source.ToString());
value->SetString("target", edge.target.ToString());
value->SetInteger("importance", edge.importance);
value->SetString("type", edge.type);
value->EndDictionary();
}
value->EndArray();
}
void ProcessMemoryDump::AddOwnershipEdge(const MemoryAllocatorDumpGuid& source,
const MemoryAllocatorDumpGuid& target,
int importance) {
allocator_dumps_edges_.push_back(
{source, target, importance, kEdgeTypeOwnership});
}
void ProcessMemoryDump::AddOwnershipEdge(
const MemoryAllocatorDumpGuid& source,
const MemoryAllocatorDumpGuid& target) {
AddOwnershipEdge(source, target, 0 /* importance */);
}
void ProcessMemoryDump::AddSuballocation(const MemoryAllocatorDumpGuid& source,
const std::string& target_node_name) {
// Do not create new dumps for suballocations in background mode.
if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND)
return;
std::string child_mad_name = target_node_name + "/__" + source.ToString();
MemoryAllocatorDump* target_child_mad = CreateAllocatorDump(child_mad_name);
AddOwnershipEdge(source, target_child_mad->guid());
}
MemoryAllocatorDump* ProcessMemoryDump::GetBlackHoleMad() {
DCHECK(is_black_hole_non_fatal_for_testing_);
if (!black_hole_mad_)
black_hole_mad_.reset(new MemoryAllocatorDump("discarded", this));
return black_hole_mad_.get();
}
} // namespace trace_event
} // namespace base