// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/trace_event/process_memory_dump.h" #include <errno.h> #include <vector> #include "base/memory/ptr_util.h" #include "base/process/process_metrics.h" #include "base/strings/stringprintf.h" #include "base/trace_event/heap_profiler_heap_dump_writer.h" #include "base/trace_event/memory_infra_background_whitelist.h" #include "base/trace_event/process_memory_totals.h" #include "base/trace_event/trace_event_argument.h" #include "build/build_config.h" #if defined(OS_IOS) #include <sys/sysctl.h> #endif #if defined(OS_POSIX) #include <sys/mman.h> #endif #if defined(OS_WIN) #include <Psapi.h> #endif namespace base { namespace trace_event { namespace { const char kEdgeTypeOwnership[] = "ownership"; std::string GetSharedGlobalAllocatorDumpName( const MemoryAllocatorDumpGuid& guid) { return "global/" + guid.ToString(); } #if defined(COUNT_RESIDENT_BYTES_SUPPORTED) size_t GetSystemPageCount(size_t mapped_size, size_t page_size) { return (mapped_size + page_size - 1) / page_size; } #endif } // namespace // static bool ProcessMemoryDump::is_black_hole_non_fatal_for_testing_ = false; #if defined(COUNT_RESIDENT_BYTES_SUPPORTED) // static size_t ProcessMemoryDump::GetSystemPageSize() { #if defined(OS_IOS) // On iOS, getpagesize() returns the user page sizes, but for allocating // arrays for mincore(), kernel page sizes is needed. sysctlbyname() should // be used for this. Refer to crbug.com/542671 and Apple rdar://23651782 int pagesize; size_t pagesize_len; int status = sysctlbyname("vm.pagesize", NULL, &pagesize_len, nullptr, 0); if (!status && pagesize_len == sizeof(pagesize)) { if (!sysctlbyname("vm.pagesize", &pagesize, &pagesize_len, nullptr, 0)) return pagesize; } LOG(ERROR) << "sysctlbyname(\"vm.pagesize\") failed."; // Falls back to getpagesize() although it may be wrong in certain cases. #endif // defined(OS_IOS) return base::GetPageSize(); } // static size_t ProcessMemoryDump::CountResidentBytes(void* start_address, size_t mapped_size) { const size_t page_size = GetSystemPageSize(); const uintptr_t start_pointer = reinterpret_cast<uintptr_t>(start_address); DCHECK_EQ(0u, start_pointer % page_size); size_t offset = 0; size_t total_resident_size = 0; bool failure = false; // An array as large as number of pages in memory segment needs to be passed // to the query function. To avoid allocating a large array, the given block // of memory is split into chunks of size |kMaxChunkSize|. const size_t kMaxChunkSize = 8 * 1024 * 1024; size_t max_vec_size = GetSystemPageCount(std::min(mapped_size, kMaxChunkSize), page_size); #if defined(OS_MACOSX) || defined(OS_IOS) std::unique_ptr<char[]> vec(new char[max_vec_size]); #elif defined(OS_WIN) std::unique_ptr<PSAPI_WORKING_SET_EX_INFORMATION[]> vec( new PSAPI_WORKING_SET_EX_INFORMATION[max_vec_size]); #elif defined(OS_POSIX) std::unique_ptr<unsigned char[]> vec(new unsigned char[max_vec_size]); #endif while (offset < mapped_size) { uintptr_t chunk_start = (start_pointer + offset); const size_t chunk_size = std::min(mapped_size - offset, kMaxChunkSize); const size_t page_count = GetSystemPageCount(chunk_size, page_size); size_t resident_page_count = 0; #if defined(OS_MACOSX) || defined(OS_IOS) // mincore in MAC does not fail with EAGAIN. failure = !!mincore(reinterpret_cast<void*>(chunk_start), chunk_size, vec.get()); for (size_t i = 0; i < page_count; i++) resident_page_count += vec[i] & MINCORE_INCORE ? 1 : 0; #elif defined(OS_WIN) for (size_t i = 0; i < page_count; i++) { vec[i].VirtualAddress = reinterpret_cast<void*>(chunk_start + i * page_size); } DWORD vec_size = static_cast<DWORD>( page_count * sizeof(PSAPI_WORKING_SET_EX_INFORMATION)); failure = !QueryWorkingSetEx(GetCurrentProcess(), vec.get(), vec_size); for (size_t i = 0; i < page_count; i++) resident_page_count += vec[i].VirtualAttributes.Valid; #elif defined(OS_POSIX) int error_counter = 0; int result = 0; // HANDLE_EINTR tries for 100 times. So following the same pattern. do { result = mincore(reinterpret_cast<void*>(chunk_start), chunk_size, vec.get()); } while (result == -1 && errno == EAGAIN && error_counter++ < 100); failure = !!result; for (size_t i = 0; i < page_count; i++) resident_page_count += vec[i] & 1; #endif if (failure) break; total_resident_size += resident_page_count * page_size; offset += kMaxChunkSize; } DCHECK(!failure); if (failure) { total_resident_size = 0; LOG(ERROR) << "CountResidentBytes failed. The resident size is invalid"; } return total_resident_size; } #endif // defined(COUNT_RESIDENT_BYTES_SUPPORTED) ProcessMemoryDump::ProcessMemoryDump( scoped_refptr<MemoryDumpSessionState> session_state, const MemoryDumpArgs& dump_args) : has_process_totals_(false), has_process_mmaps_(false), session_state_(std::move(session_state)), dump_args_(dump_args) {} ProcessMemoryDump::~ProcessMemoryDump() {} MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump( const std::string& absolute_name) { return AddAllocatorDumpInternal( WrapUnique(new MemoryAllocatorDump(absolute_name, this))); } MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump( const std::string& absolute_name, const MemoryAllocatorDumpGuid& guid) { return AddAllocatorDumpInternal( WrapUnique(new MemoryAllocatorDump(absolute_name, this, guid))); } MemoryAllocatorDump* ProcessMemoryDump::AddAllocatorDumpInternal( std::unique_ptr<MemoryAllocatorDump> mad) { // In background mode return the black hole dump, if invalid dump name is // given. if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND && !IsMemoryAllocatorDumpNameWhitelisted(mad->absolute_name())) { return GetBlackHoleMad(); } auto insertion_result = allocator_dumps_.insert( std::make_pair(mad->absolute_name(), std::move(mad))); MemoryAllocatorDump* inserted_mad = insertion_result.first->second.get(); DCHECK(insertion_result.second) << "Duplicate name: " << inserted_mad->absolute_name(); return inserted_mad; } MemoryAllocatorDump* ProcessMemoryDump::GetAllocatorDump( const std::string& absolute_name) const { auto it = allocator_dumps_.find(absolute_name); if (it != allocator_dumps_.end()) return it->second.get(); if (black_hole_mad_) return black_hole_mad_.get(); return nullptr; } MemoryAllocatorDump* ProcessMemoryDump::GetOrCreateAllocatorDump( const std::string& absolute_name) { MemoryAllocatorDump* mad = GetAllocatorDump(absolute_name); return mad ? mad : CreateAllocatorDump(absolute_name); } MemoryAllocatorDump* ProcessMemoryDump::CreateSharedGlobalAllocatorDump( const MemoryAllocatorDumpGuid& guid) { // Global dumps are disabled in background mode. if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND) return GetBlackHoleMad(); // A shared allocator dump can be shared within a process and the guid could // have been created already. MemoryAllocatorDump* mad = GetSharedGlobalAllocatorDump(guid); if (mad) { // The weak flag is cleared because this method should create a non-weak // dump. mad->clear_flags(MemoryAllocatorDump::Flags::WEAK); return mad; } return CreateAllocatorDump(GetSharedGlobalAllocatorDumpName(guid), guid); } MemoryAllocatorDump* ProcessMemoryDump::CreateWeakSharedGlobalAllocatorDump( const MemoryAllocatorDumpGuid& guid) { // Global dumps are disabled in background mode. if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND) return GetBlackHoleMad(); MemoryAllocatorDump* mad = GetSharedGlobalAllocatorDump(guid); if (mad) return mad; mad = CreateAllocatorDump(GetSharedGlobalAllocatorDumpName(guid), guid); mad->set_flags(MemoryAllocatorDump::Flags::WEAK); return mad; } MemoryAllocatorDump* ProcessMemoryDump::GetSharedGlobalAllocatorDump( const MemoryAllocatorDumpGuid& guid) const { return GetAllocatorDump(GetSharedGlobalAllocatorDumpName(guid)); } void ProcessMemoryDump::DumpHeapUsage( const base::hash_map<base::trace_event::AllocationContext, base::trace_event::AllocationMetrics>& metrics_by_context, base::trace_event::TraceEventMemoryOverhead& overhead, const char* allocator_name) { if (!metrics_by_context.empty()) { DCHECK_EQ(0ul, heap_dumps_.count(allocator_name)); std::unique_ptr<TracedValue> heap_dump = ExportHeapDump( metrics_by_context, *session_state()); heap_dumps_[allocator_name] = std::move(heap_dump); } std::string base_name = base::StringPrintf("tracing/heap_profiler_%s", allocator_name); overhead.DumpInto(base_name.c_str(), this); } void ProcessMemoryDump::Clear() { if (has_process_totals_) { process_totals_.Clear(); has_process_totals_ = false; } if (has_process_mmaps_) { process_mmaps_.Clear(); has_process_mmaps_ = false; } allocator_dumps_.clear(); allocator_dumps_edges_.clear(); heap_dumps_.clear(); } void ProcessMemoryDump::TakeAllDumpsFrom(ProcessMemoryDump* other) { DCHECK(!other->has_process_totals() && !other->has_process_mmaps()); // Moves the ownership of all MemoryAllocatorDump(s) contained in |other| // into this ProcessMemoryDump, checking for duplicates. for (auto& it : other->allocator_dumps_) AddAllocatorDumpInternal(std::move(it.second)); other->allocator_dumps_.clear(); // Move all the edges. allocator_dumps_edges_.insert(allocator_dumps_edges_.end(), other->allocator_dumps_edges_.begin(), other->allocator_dumps_edges_.end()); other->allocator_dumps_edges_.clear(); for (auto& it : other->heap_dumps_) { DCHECK_EQ(0ul, heap_dumps_.count(it.first)); heap_dumps_.insert(std::make_pair(it.first, std::move(it.second))); } other->heap_dumps_.clear(); } void ProcessMemoryDump::AsValueInto(TracedValue* value) const { if (has_process_totals_) { value->BeginDictionary("process_totals"); process_totals_.AsValueInto(value); value->EndDictionary(); } if (has_process_mmaps_) { value->BeginDictionary("process_mmaps"); process_mmaps_.AsValueInto(value); value->EndDictionary(); } if (allocator_dumps_.size() > 0) { value->BeginDictionary("allocators"); for (const auto& allocator_dump_it : allocator_dumps_) allocator_dump_it.second->AsValueInto(value); value->EndDictionary(); } if (heap_dumps_.size() > 0) { value->BeginDictionary("heaps"); for (const auto& name_and_dump : heap_dumps_) value->SetValueWithCopiedName(name_and_dump.first, *name_and_dump.second); value->EndDictionary(); // "heaps" } value->BeginArray("allocators_graph"); for (const MemoryAllocatorDumpEdge& edge : allocator_dumps_edges_) { value->BeginDictionary(); value->SetString("source", edge.source.ToString()); value->SetString("target", edge.target.ToString()); value->SetInteger("importance", edge.importance); value->SetString("type", edge.type); value->EndDictionary(); } value->EndArray(); } void ProcessMemoryDump::AddOwnershipEdge(const MemoryAllocatorDumpGuid& source, const MemoryAllocatorDumpGuid& target, int importance) { allocator_dumps_edges_.push_back( {source, target, importance, kEdgeTypeOwnership}); } void ProcessMemoryDump::AddOwnershipEdge( const MemoryAllocatorDumpGuid& source, const MemoryAllocatorDumpGuid& target) { AddOwnershipEdge(source, target, 0 /* importance */); } void ProcessMemoryDump::AddSuballocation(const MemoryAllocatorDumpGuid& source, const std::string& target_node_name) { // Do not create new dumps for suballocations in background mode. if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND) return; std::string child_mad_name = target_node_name + "/__" + source.ToString(); MemoryAllocatorDump* target_child_mad = CreateAllocatorDump(child_mad_name); AddOwnershipEdge(source, target_child_mad->guid()); } MemoryAllocatorDump* ProcessMemoryDump::GetBlackHoleMad() { DCHECK(is_black_hole_non_fatal_for_testing_); if (!black_hole_mad_) black_hole_mad_.reset(new MemoryAllocatorDump("discarded", this)); return black_hole_mad_.get(); } } // namespace trace_event } // namespace base