// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_H_
#include <stddef.h>
#include <limits>
#include <type_traits>
#include "base/logging.h"
#include "base/numerics/safe_conversions_impl.h"
namespace base {
// Convenience function that returns true if the supplied value is in range
// for the destination type.
template <typename Dst, typename Src>
constexpr bool IsValueInRangeForNumericType(Src value) {
return internal::DstRangeRelationToSrcRange<Dst>(value) ==
internal::RANGE_VALID;
}
// Convenience function for determining if a numeric value is negative without
// throwing compiler warnings on: unsigned(value) < 0.
template <typename T>
constexpr typename std::enable_if<std::numeric_limits<T>::is_signed, bool>::type
IsValueNegative(T value) {
static_assert(std::numeric_limits<T>::is_specialized,
"Argument must be numeric.");
return value < 0;
}
template <typename T>
constexpr typename std::enable_if<!std::numeric_limits<T>::is_signed,
bool>::type IsValueNegative(T) {
static_assert(std::numeric_limits<T>::is_specialized,
"Argument must be numeric.");
return false;
}
// checked_cast<> is analogous to static_cast<> for numeric types,
// except that it CHECKs that the specified numeric conversion will not
// overflow or underflow. NaN source will always trigger a CHECK.
template <typename Dst, typename Src>
inline Dst checked_cast(Src value) {
CHECK(IsValueInRangeForNumericType<Dst>(value));
return static_cast<Dst>(value);
}
// HandleNaN will cause this class to CHECK(false).
struct SaturatedCastNaNBehaviorCheck {
template <typename T>
static T HandleNaN() {
CHECK(false);
return T();
}
};
// HandleNaN will return 0 in this case.
struct SaturatedCastNaNBehaviorReturnZero {
template <typename T>
static constexpr T HandleNaN() {
return T();
}
};
namespace internal {
// This wrapper is used for C++11 constexpr support by avoiding the declaration
// of local variables in the saturated_cast template function.
template <typename Dst, class NaNHandler, typename Src>
constexpr Dst saturated_cast_impl(const Src value,
const RangeConstraint constraint) {
return constraint == RANGE_VALID
? static_cast<Dst>(value)
: (constraint == RANGE_UNDERFLOW
? std::numeric_limits<Dst>::min()
: (constraint == RANGE_OVERFLOW
? std::numeric_limits<Dst>::max()
: (constraint == RANGE_INVALID
? NaNHandler::template HandleNaN<Dst>()
: (NOTREACHED(), static_cast<Dst>(value)))));
}
} // namespace internal
// saturated_cast<> is analogous to static_cast<> for numeric types, except
// that the specified numeric conversion will saturate rather than overflow or
// underflow. NaN assignment to an integral will defer the behavior to a
// specified class. By default, it will return 0.
template <typename Dst,
class NaNHandler = SaturatedCastNaNBehaviorReturnZero,
typename Src>
constexpr Dst saturated_cast(Src value) {
return std::numeric_limits<Dst>::is_iec559
? static_cast<Dst>(value) // Floating point optimization.
: internal::saturated_cast_impl<Dst, NaNHandler>(
value, internal::DstRangeRelationToSrcRange<Dst>(value));
}
// strict_cast<> is analogous to static_cast<> for numeric types, except that
// it will cause a compile failure if the destination type is not large enough
// to contain any value in the source type. It performs no runtime checking.
template <typename Dst, typename Src>
constexpr Dst strict_cast(Src value) {
static_assert(std::numeric_limits<Src>::is_specialized,
"Argument must be numeric.");
static_assert(std::numeric_limits<Dst>::is_specialized,
"Result must be numeric.");
static_assert((internal::StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
internal::NUMERIC_RANGE_CONTAINED),
"The numeric conversion is out of range for this type. You "
"should probably use one of the following conversion "
"mechanisms on the value you want to pass:\n"
"- base::checked_cast\n"
"- base::saturated_cast\n"
"- base::CheckedNumeric");
return static_cast<Dst>(value);
}
// StrictNumeric implements compile time range checking between numeric types by
// wrapping assignment operations in a strict_cast. This class is intended to be
// used for function arguments and return types, to ensure the destination type
// can always contain the source type. This is essentially the same as enforcing
// -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied
// incrementally at API boundaries, making it easier to convert code so that it
// compiles cleanly with truncation warnings enabled.
// This template should introduce no runtime overhead, but it also provides no
// runtime checking of any of the associated mathematical operations. Use
// CheckedNumeric for runtime range checks of the actual value being assigned.
template <typename T>
class StrictNumeric {
public:
typedef T type;
constexpr StrictNumeric() : value_(0) {}
// Copy constructor.
template <typename Src>
constexpr StrictNumeric(const StrictNumeric<Src>& rhs)
: value_(strict_cast<T>(rhs.value_)) {}
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to StrictNumerics to make them easier to use.
template <typename Src>
constexpr StrictNumeric(Src value)
: value_(strict_cast<T>(value)) {}
// The numeric cast operator basically handles all the magic.
template <typename Dst>
constexpr operator Dst() const {
return strict_cast<Dst>(value_);
}
private:
const T value_;
};
// Explicitly make a shorter size_t typedef for convenience.
typedef StrictNumeric<size_t> SizeT;
} // namespace base
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_H_