// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_ #define BASE_NUMERICS_SAFE_CONVERSIONS_H_ #include <stddef.h> #include <limits> #include <type_traits> #include "base/logging.h" #include "base/numerics/safe_conversions_impl.h" namespace base { // Convenience function that returns true if the supplied value is in range // for the destination type. template <typename Dst, typename Src> constexpr bool IsValueInRangeForNumericType(Src value) { return internal::DstRangeRelationToSrcRange<Dst>(value) == internal::RANGE_VALID; } // Convenience function for determining if a numeric value is negative without // throwing compiler warnings on: unsigned(value) < 0. template <typename T> constexpr typename std::enable_if<std::numeric_limits<T>::is_signed, bool>::type IsValueNegative(T value) { static_assert(std::numeric_limits<T>::is_specialized, "Argument must be numeric."); return value < 0; } template <typename T> constexpr typename std::enable_if<!std::numeric_limits<T>::is_signed, bool>::type IsValueNegative(T) { static_assert(std::numeric_limits<T>::is_specialized, "Argument must be numeric."); return false; } // checked_cast<> is analogous to static_cast<> for numeric types, // except that it CHECKs that the specified numeric conversion will not // overflow or underflow. NaN source will always trigger a CHECK. template <typename Dst, typename Src> inline Dst checked_cast(Src value) { CHECK(IsValueInRangeForNumericType<Dst>(value)); return static_cast<Dst>(value); } // HandleNaN will cause this class to CHECK(false). struct SaturatedCastNaNBehaviorCheck { template <typename T> static T HandleNaN() { CHECK(false); return T(); } }; // HandleNaN will return 0 in this case. struct SaturatedCastNaNBehaviorReturnZero { template <typename T> static constexpr T HandleNaN() { return T(); } }; namespace internal { // This wrapper is used for C++11 constexpr support by avoiding the declaration // of local variables in the saturated_cast template function. template <typename Dst, class NaNHandler, typename Src> constexpr Dst saturated_cast_impl(const Src value, const RangeConstraint constraint) { return constraint == RANGE_VALID ? static_cast<Dst>(value) : (constraint == RANGE_UNDERFLOW ? std::numeric_limits<Dst>::min() : (constraint == RANGE_OVERFLOW ? std::numeric_limits<Dst>::max() : (constraint == RANGE_INVALID ? NaNHandler::template HandleNaN<Dst>() : (NOTREACHED(), static_cast<Dst>(value))))); } } // namespace internal // saturated_cast<> is analogous to static_cast<> for numeric types, except // that the specified numeric conversion will saturate rather than overflow or // underflow. NaN assignment to an integral will defer the behavior to a // specified class. By default, it will return 0. template <typename Dst, class NaNHandler = SaturatedCastNaNBehaviorReturnZero, typename Src> constexpr Dst saturated_cast(Src value) { return std::numeric_limits<Dst>::is_iec559 ? static_cast<Dst>(value) // Floating point optimization. : internal::saturated_cast_impl<Dst, NaNHandler>( value, internal::DstRangeRelationToSrcRange<Dst>(value)); } // strict_cast<> is analogous to static_cast<> for numeric types, except that // it will cause a compile failure if the destination type is not large enough // to contain any value in the source type. It performs no runtime checking. template <typename Dst, typename Src> constexpr Dst strict_cast(Src value) { static_assert(std::numeric_limits<Src>::is_specialized, "Argument must be numeric."); static_assert(std::numeric_limits<Dst>::is_specialized, "Result must be numeric."); static_assert((internal::StaticDstRangeRelationToSrcRange<Dst, Src>::value == internal::NUMERIC_RANGE_CONTAINED), "The numeric conversion is out of range for this type. You " "should probably use one of the following conversion " "mechanisms on the value you want to pass:\n" "- base::checked_cast\n" "- base::saturated_cast\n" "- base::CheckedNumeric"); return static_cast<Dst>(value); } // StrictNumeric implements compile time range checking between numeric types by // wrapping assignment operations in a strict_cast. This class is intended to be // used for function arguments and return types, to ensure the destination type // can always contain the source type. This is essentially the same as enforcing // -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied // incrementally at API boundaries, making it easier to convert code so that it // compiles cleanly with truncation warnings enabled. // This template should introduce no runtime overhead, but it also provides no // runtime checking of any of the associated mathematical operations. Use // CheckedNumeric for runtime range checks of the actual value being assigned. template <typename T> class StrictNumeric { public: typedef T type; constexpr StrictNumeric() : value_(0) {} // Copy constructor. template <typename Src> constexpr StrictNumeric(const StrictNumeric<Src>& rhs) : value_(strict_cast<T>(rhs.value_)) {} // This is not an explicit constructor because we implicitly upgrade regular // numerics to StrictNumerics to make them easier to use. template <typename Src> constexpr StrictNumeric(Src value) : value_(strict_cast<T>(value)) {} // The numeric cast operator basically handles all the magic. template <typename Dst> constexpr operator Dst() const { return strict_cast<Dst>(value_); } private: const T value_; }; // Explicitly make a shorter size_t typedef for convenience. typedef StrictNumeric<size_t> SizeT; } // namespace base #endif // BASE_NUMERICS_SAFE_CONVERSIONS_H_