// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_loop_test.h"
#include <stddef.h>
#include <utility>
#include "base/bind.h"
#include "base/macros.h"
#include "base/memory/ref_counted.h"
#include "base/run_loop.h"
#include "base/single_thread_task_runner.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/thread.h"
namespace base {
namespace test {
namespace {
class Foo : public RefCounted<Foo> {
public:
Foo() : test_count_(0) {
}
void Test0() {
++test_count_;
}
void Test1ConstRef(const std::string& a) {
++test_count_;
result_.append(a);
}
void Test1Ptr(std::string* a) {
++test_count_;
result_.append(*a);
}
void Test1Int(int a) {
test_count_ += a;
}
void Test2Ptr(std::string* a, std::string* b) {
++test_count_;
result_.append(*a);
result_.append(*b);
}
void Test2Mixed(const std::string& a, std::string* b) {
++test_count_;
result_.append(a);
result_.append(*b);
}
int test_count() const { return test_count_; }
const std::string& result() const { return result_; }
private:
friend class RefCounted<Foo>;
~Foo() {}
int test_count_;
std::string result_;
DISALLOW_COPY_AND_ASSIGN(Foo);
};
// This function runs slowly to simulate a large amount of work being done.
void SlowFunc(TimeDelta pause, int* quit_counter) {
PlatformThread::Sleep(pause);
if (--(*quit_counter) == 0)
MessageLoop::current()->QuitWhenIdle();
}
// This function records the time when Run was called in a Time object, which is
// useful for building a variety of MessageLoop tests.
// TODO(sky): remove?
void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
*run_time = Time::Now();
// Cause our Run function to take some time to execute. As a result we can
// count on subsequent RecordRunTimeFunc()s running at a future time,
// without worry about the resolution of our system clock being an issue.
SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
}
} // namespace
void RunTest_PostTask(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
// Add tests to message loop
scoped_refptr<Foo> foo(new Foo());
std::string a("a"), b("b"), c("c"), d("d");
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
Bind(&Foo::Test0, foo.get()));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&Foo::Test1ConstRef, foo.get(), a));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&Foo::Test1Ptr, foo.get(), &b));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&Foo::Test1Int, foo.get(), 100));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&Foo::Test2Ptr, foo.get(), &a, &c));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&Foo::Test2Mixed, foo.get(), a, &d));
// After all tests, post a message that will shut down the message loop
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE,
Bind(&MessageLoop::QuitWhenIdle, Unretained(MessageLoop::current())));
// Now kick things off
RunLoop().Run();
EXPECT_EQ(foo->test_count(), 105);
EXPECT_EQ(foo->result(), "abacad");
}
void RunTest_PostDelayedTask_Basic(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
// Test that PostDelayedTask results in a delayed task.
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
int num_tasks = 1;
Time run_time;
loop.task_runner()->PostDelayedTask(
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time, &num_tasks), kDelay);
Time time_before_run = Time::Now();
RunLoop().Run();
Time time_after_run = Time::Now();
EXPECT_EQ(0, num_tasks);
EXPECT_LT(kDelay, time_after_run - time_before_run);
}
void RunTest_PostDelayedTask_InDelayOrder(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
// Test that two tasks with different delays run in the right order.
int num_tasks = 2;
Time run_time1, run_time2;
loop.task_runner()->PostDelayedTask(
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time1, &num_tasks),
TimeDelta::FromMilliseconds(200));
// If we get a large pause in execution (due to a context switch) here, this
// test could fail.
loop.task_runner()->PostDelayedTask(
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time2, &num_tasks),
TimeDelta::FromMilliseconds(10));
RunLoop().Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time2 < run_time1);
}
void RunTest_PostDelayedTask_InPostOrder(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
// Test that two tasks with the same delay run in the order in which they
// were posted.
//
// NOTE: This is actually an approximate test since the API only takes a
// "delay" parameter, so we are not exactly simulating two tasks that get
// posted at the exact same time. It would be nice if the API allowed us to
// specify the desired run time.
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
int num_tasks = 2;
Time run_time1, run_time2;
loop.task_runner()->PostDelayedTask(
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time1, &num_tasks), kDelay);
loop.task_runner()->PostDelayedTask(
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), kDelay);
RunLoop().Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time1 < run_time2);
}
void RunTest_PostDelayedTask_InPostOrder_2(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
// Test that a delayed task still runs after a normal tasks even if the
// normal tasks take a long time to run.
const TimeDelta kPause = TimeDelta::FromMilliseconds(50);
int num_tasks = 2;
Time run_time;
loop.task_runner()->PostTask(FROM_HERE, Bind(&SlowFunc, kPause, &num_tasks));
loop.task_runner()->PostDelayedTask(
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
TimeDelta::FromMilliseconds(10));
Time time_before_run = Time::Now();
RunLoop().Run();
Time time_after_run = Time::Now();
EXPECT_EQ(0, num_tasks);
EXPECT_LT(kPause, time_after_run - time_before_run);
}
void RunTest_PostDelayedTask_InPostOrder_3(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
// Test that a delayed task still runs after a pile of normal tasks. The key
// difference between this test and the previous one is that here we return
// the MessageLoop a lot so we give the MessageLoop plenty of opportunities
// to maybe run the delayed task. It should know not to do so until the
// delayed task's delay has passed.
int num_tasks = 11;
Time run_time1, run_time2;
// Clutter the ML with tasks.
for (int i = 1; i < num_tasks; ++i)
loop.task_runner()->PostTask(
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time1, &num_tasks));
loop.task_runner()->PostDelayedTask(
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time2, &num_tasks),
TimeDelta::FromMilliseconds(1));
RunLoop().Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time2 > run_time1);
}
void RunTest_PostDelayedTask_SharedTimer(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
// Test that the interval of the timer, used to run the next delayed task, is
// set to a value corresponding to when the next delayed task should run.
// By setting num_tasks to 1, we ensure that the first task to run causes the
// run loop to exit.
int num_tasks = 1;
Time run_time1, run_time2;
loop.task_runner()->PostDelayedTask(
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time1, &num_tasks),
TimeDelta::FromSeconds(1000));
loop.task_runner()->PostDelayedTask(
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time2, &num_tasks),
TimeDelta::FromMilliseconds(10));
Time start_time = Time::Now();
RunLoop().Run();
EXPECT_EQ(0, num_tasks);
// Ensure that we ran in far less time than the slower timer.
TimeDelta total_time = Time::Now() - start_time;
EXPECT_GT(5000, total_time.InMilliseconds());
// In case both timers somehow run at nearly the same time, sleep a little
// and then run all pending to force them both to have run. This is just
// encouraging flakiness if there is any.
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
RunLoop().RunUntilIdle();
EXPECT_TRUE(run_time1.is_null());
EXPECT_FALSE(run_time2.is_null());
}
// This is used to inject a test point for recording the destructor calls for
// Closure objects send to MessageLoop::PostTask(). It is awkward usage since we
// are trying to hook the actual destruction, which is not a common operation.
class RecordDeletionProbe : public RefCounted<RecordDeletionProbe> {
public:
RecordDeletionProbe(RecordDeletionProbe* post_on_delete, bool* was_deleted)
: post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
}
void Run() {}
private:
friend class RefCounted<RecordDeletionProbe>;
~RecordDeletionProbe() {
*was_deleted_ = true;
if (post_on_delete_.get())
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&RecordDeletionProbe::Run, post_on_delete_.get()));
}
scoped_refptr<RecordDeletionProbe> post_on_delete_;
bool* was_deleted_;
};
void RunTest_EnsureDeletion(MessagePumpFactory factory) {
bool a_was_deleted = false;
bool b_was_deleted = false;
{
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
loop.task_runner()->PostTask(
FROM_HERE, Bind(&RecordDeletionProbe::Run,
new RecordDeletionProbe(NULL, &a_was_deleted)));
// TODO(ajwong): Do we really need 1000ms here?
loop.task_runner()->PostDelayedTask(
FROM_HERE, Bind(&RecordDeletionProbe::Run,
new RecordDeletionProbe(NULL, &b_was_deleted)),
TimeDelta::FromMilliseconds(1000));
}
EXPECT_TRUE(a_was_deleted);
EXPECT_TRUE(b_was_deleted);
}
void RunTest_EnsureDeletion_Chain(MessagePumpFactory factory) {
bool a_was_deleted = false;
bool b_was_deleted = false;
bool c_was_deleted = false;
{
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
// The scoped_refptr for each of the below is held either by the chained
// RecordDeletionProbe, or the bound RecordDeletionProbe::Run() callback.
RecordDeletionProbe* a = new RecordDeletionProbe(NULL, &a_was_deleted);
RecordDeletionProbe* b = new RecordDeletionProbe(a, &b_was_deleted);
RecordDeletionProbe* c = new RecordDeletionProbe(b, &c_was_deleted);
loop.task_runner()->PostTask(FROM_HERE, Bind(&RecordDeletionProbe::Run, c));
}
EXPECT_TRUE(a_was_deleted);
EXPECT_TRUE(b_was_deleted);
EXPECT_TRUE(c_was_deleted);
}
void NestingFunc(int* depth) {
if (*depth > 0) {
*depth -= 1;
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
Bind(&NestingFunc, depth));
MessageLoop::current()->SetNestableTasksAllowed(true);
RunLoop().Run();
}
MessageLoop::current()->QuitWhenIdle();
}
void RunTest_Nesting(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
int depth = 100;
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
Bind(&NestingFunc, &depth));
RunLoop().Run();
EXPECT_EQ(depth, 0);
}
// A NestingObserver that tracks the number of nested message loop starts it
// has seen.
class TestNestingObserver : public MessageLoop::NestingObserver {
public:
TestNestingObserver() {}
~TestNestingObserver() override {}
int begin_nested_loop_count() const { return begin_nested_loop_count_; }
// MessageLoop::NestingObserver:
void OnBeginNestedMessageLoop() override { begin_nested_loop_count_++; }
private:
int begin_nested_loop_count_ = 0;
DISALLOW_COPY_AND_ASSIGN(TestNestingObserver);
};
void ExpectOneBeginNestedLoop(TestNestingObserver* observer) {
EXPECT_EQ(1, observer->begin_nested_loop_count());
}
// Starts a nested message loop.
void RunNestedLoop(TestNestingObserver* observer,
const Closure& quit_outer_loop) {
// The nested loop hasn't started yet.
EXPECT_EQ(0, observer->begin_nested_loop_count());
MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
RunLoop nested_loop;
// Verify that by the time the first task is run the observer has seen the
// message loop begin.
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&ExpectOneBeginNestedLoop, observer));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
nested_loop.QuitClosure());
nested_loop.Run();
// Quitting message loops doesn't change the begin count.
EXPECT_EQ(1, observer->begin_nested_loop_count());
quit_outer_loop.Run();
}
// Tests that a NestingObserver is notified when a nested message loop begins.
void RunTest_NestingObserver(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop outer_loop(std::move(pump));
// Observe the outer loop for nested message loops beginning.
TestNestingObserver nesting_observer;
outer_loop.AddNestingObserver(&nesting_observer);
// Post a task that runs a nested message loop.
outer_loop.task_runner()->PostTask(FROM_HERE,
Bind(&RunNestedLoop, &nesting_observer,
outer_loop.QuitWhenIdleClosure()));
RunLoop().Run();
outer_loop.RemoveNestingObserver(&nesting_observer);
}
enum TaskType {
MESSAGEBOX,
ENDDIALOG,
RECURSIVE,
TIMEDMESSAGELOOP,
QUITMESSAGELOOP,
ORDERED,
PUMPS,
SLEEP,
RUNS,
};
struct TaskItem {
TaskItem(TaskType t, int c, bool s)
: type(t),
cookie(c),
start(s) {
}
TaskType type;
int cookie;
bool start;
bool operator == (const TaskItem& other) const {
return type == other.type && cookie == other.cookie && start == other.start;
}
};
std::ostream& operator <<(std::ostream& os, TaskType type) {
switch (type) {
case MESSAGEBOX: os << "MESSAGEBOX"; break;
case ENDDIALOG: os << "ENDDIALOG"; break;
case RECURSIVE: os << "RECURSIVE"; break;
case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
case ORDERED: os << "ORDERED"; break;
case PUMPS: os << "PUMPS"; break;
case SLEEP: os << "SLEEP"; break;
default:
NOTREACHED();
os << "Unknown TaskType";
break;
}
return os;
}
std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
if (item.start)
return os << item.type << " " << item.cookie << " starts";
else
return os << item.type << " " << item.cookie << " ends";
}
class TaskList {
public:
void RecordStart(TaskType type, int cookie) {
TaskItem item(type, cookie, true);
DVLOG(1) << item;
task_list_.push_back(item);
}
void RecordEnd(TaskType type, int cookie) {
TaskItem item(type, cookie, false);
DVLOG(1) << item;
task_list_.push_back(item);
}
size_t Size() {
return task_list_.size();
}
TaskItem Get(int n) {
return task_list_[n];
}
private:
std::vector<TaskItem> task_list_;
};
void RecursiveFunc(TaskList* order, int cookie, int depth,
bool is_reentrant) {
order->RecordStart(RECURSIVE, cookie);
if (depth > 0) {
if (is_reentrant)
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE,
Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
}
order->RecordEnd(RECURSIVE, cookie);
}
void QuitFunc(TaskList* order, int cookie) {
order->RecordStart(QUITMESSAGELOOP, cookie);
MessageLoop::current()->QuitWhenIdle();
order->RecordEnd(QUITMESSAGELOOP, cookie);
}
void RunTest_RecursiveDenial1(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
TaskList order;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&RecursiveFunc, &order, 1, 2, false));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&RecursiveFunc, &order, 2, 2, false));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
Bind(&QuitFunc, &order, 3));
RunLoop().Run();
// FIFO order.
ASSERT_EQ(14U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false));
}
void RecursiveSlowFunc(TaskList* order, int cookie, int depth,
bool is_reentrant) {
RecursiveFunc(order, cookie, depth, is_reentrant);
PlatformThread::Sleep(TimeDelta::FromMilliseconds(10));
}
void OrderedFunc(TaskList* order, int cookie) {
order->RecordStart(ORDERED, cookie);
order->RecordEnd(ORDERED, cookie);
}
void RunTest_RecursiveDenial3(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
TaskList order;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&RecursiveSlowFunc, &order, 1, 2, false));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&RecursiveSlowFunc, &order, 2, 2, false));
MessageLoop::current()->task_runner()->PostDelayedTask(
FROM_HERE, Bind(&OrderedFunc, &order, 3), TimeDelta::FromMilliseconds(5));
MessageLoop::current()->task_runner()->PostDelayedTask(
FROM_HERE, Bind(&QuitFunc, &order, 4), TimeDelta::FromMilliseconds(5));
RunLoop().Run();
// FIFO order.
ASSERT_EQ(16U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(7), TaskItem(ORDERED, 3, false));
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 4, true));
EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 4, false));
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 2, false));
}
void RunTest_RecursiveSupport1(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&RecursiveFunc, &order, 1, 2, true));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&RecursiveFunc, &order, 2, 2, true));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
Bind(&QuitFunc, &order, 3));
RunLoop().Run();
// FIFO order.
ASSERT_EQ(14U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false));
}
// Tests that non nestable tasks run in FIFO if there are no nested loops.
void RunTest_NonNestableWithNoNesting(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
MessageLoop::current()->task_runner()->PostNonNestableTask(
FROM_HERE,
Bind(&OrderedFunc, &order, 1));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE,
Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
Bind(&QuitFunc, &order, 3));
RunLoop().Run();
// FIFO order.
ASSERT_EQ(6U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(ORDERED, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
}
void FuncThatPumps(TaskList* order, int cookie) {
order->RecordStart(PUMPS, cookie);
{
MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
RunLoop().RunUntilIdle();
}
order->RecordEnd(PUMPS, cookie);
}
void SleepFunc(TaskList* order, int cookie, TimeDelta delay) {
order->RecordStart(SLEEP, cookie);
PlatformThread::Sleep(delay);
order->RecordEnd(SLEEP, cookie);
}
// Tests that non nestable tasks don't run when there's code in the call stack.
void RunTest_NonNestableInNestedLoop(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE,
Bind(&FuncThatPumps, &order, 1));
MessageLoop::current()->task_runner()->PostNonNestableTask(
FROM_HERE,
Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE,
Bind(&OrderedFunc, &order, 3));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE,
Bind(&SleepFunc, &order, 4, TimeDelta::FromMilliseconds(50)));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE,
Bind(&OrderedFunc, &order, 5));
MessageLoop::current()->task_runner()->PostNonNestableTask(
FROM_HERE,
Bind(&QuitFunc, &order, 6));
RunLoop().Run();
// FIFO order.
ASSERT_EQ(12U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(PUMPS, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 3, false));
EXPECT_EQ(order.Get(3), TaskItem(SLEEP, 4, true));
EXPECT_EQ(order.Get(4), TaskItem(SLEEP, 4, false));
EXPECT_EQ(order.Get(5), TaskItem(ORDERED, 5, true));
EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 5, false));
EXPECT_EQ(order.Get(7), TaskItem(PUMPS, 1, false));
EXPECT_EQ(order.Get(8), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 6, true));
EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 6, false));
}
void FuncThatRuns(TaskList* order, int cookie, RunLoop* run_loop) {
order->RecordStart(RUNS, cookie);
{
MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
run_loop->Run();
}
order->RecordEnd(RUNS, cookie);
}
void FuncThatQuitsNow() {
MessageLoop::current()->QuitNow();
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
void RunTest_QuitNow(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
RunLoop run_loop;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&run_loop)));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
Bind(&FuncThatQuitsNow));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 3));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
Bind(&FuncThatQuitsNow));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 4)); // never runs
RunLoop().Run();
ASSERT_EQ(6U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
void RunTest_RunLoopQuitTop(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
RunLoop outer_run_loop;
RunLoop nested_run_loop;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
outer_run_loop.QuitClosure());
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, nested_run_loop.QuitClosure());
outer_run_loop.Run();
ASSERT_EQ(4U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
void RunTest_RunLoopQuitNested(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
RunLoop outer_run_loop;
RunLoop nested_run_loop;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, nested_run_loop.QuitClosure());
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
outer_run_loop.QuitClosure());
outer_run_loop.Run();
ASSERT_EQ(4U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
void RunTest_RunLoopQuitBogus(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
RunLoop outer_run_loop;
RunLoop nested_run_loop;
RunLoop bogus_run_loop;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
bogus_run_loop.QuitClosure());
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
outer_run_loop.QuitClosure());
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, nested_run_loop.QuitClosure());
outer_run_loop.Run();
ASSERT_EQ(4U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
void RunTest_RunLoopQuitDeep(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
RunLoop outer_run_loop;
RunLoop nested_loop1;
RunLoop nested_loop2;
RunLoop nested_loop3;
RunLoop nested_loop4;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&nested_loop1)));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatRuns, &order, 2, Unretained(&nested_loop2)));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatRuns, &order, 3, Unretained(&nested_loop3)));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatRuns, &order, 4, Unretained(&nested_loop4)));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 5));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
outer_run_loop.QuitClosure());
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 6));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
nested_loop1.QuitClosure());
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 7));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
nested_loop2.QuitClosure());
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 8));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
nested_loop3.QuitClosure());
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 9));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
nested_loop4.QuitClosure());
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 10));
outer_run_loop.Run();
ASSERT_EQ(18U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit works before RunWithID.
void RunTest_RunLoopQuitOrderBefore(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
RunLoop run_loop;
run_loop.Quit();
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 1)); // never runs
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatQuitsNow)); // never runs
run_loop.Run();
ASSERT_EQ(0U, order.Size());
}
// Tests RunLoopQuit works during RunWithID.
void RunTest_RunLoopQuitOrderDuring(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
RunLoop run_loop;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 1));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
run_loop.QuitClosure());
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 2)); // never runs
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatQuitsNow)); // never runs
run_loop.Run();
ASSERT_EQ(2U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit works after RunWithID.
void RunTest_RunLoopQuitOrderAfter(MessagePumpFactory factory) {
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
TaskList order;
RunLoop run_loop;
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&run_loop)));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
Bind(&FuncThatQuitsNow));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 3));
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, run_loop.QuitClosure()); // has no affect
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&OrderedFunc, &order, 4));
MessageLoop::current()->task_runner()->PostTask(FROM_HERE,
Bind(&FuncThatQuitsNow));
RunLoop outer_run_loop;
outer_run_loop.Run();
ASSERT_EQ(8U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
void PostNTasksThenQuit(int posts_remaining) {
if (posts_remaining > 1) {
MessageLoop::current()->task_runner()->PostTask(
FROM_HERE, Bind(&PostNTasksThenQuit, posts_remaining - 1));
} else {
MessageLoop::current()->QuitWhenIdle();
}
}
// There was a bug in the MessagePumpGLib where posting tasks recursively
// caused the message loop to hang, due to the buffer of the internal pipe
// becoming full. Test all MessageLoop types to ensure this issue does not
// exist in other MessagePumps.
//
// On Linux, the pipe buffer size is 64KiB by default. The bug caused one
// byte accumulated in the pipe per two posts, so we should repeat 128K
// times to reproduce the bug.
void RunTest_RecursivePosts(MessagePumpFactory factory) {
const int kNumTimes = 1 << 17;
std::unique_ptr<MessagePump> pump(factory());
MessageLoop loop(std::move(pump));
loop.task_runner()->PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumTimes));
RunLoop().Run();
}
} // namespace test
} // namespace base