// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_loop_test.h" #include <stddef.h> #include <utility> #include "base/bind.h" #include "base/macros.h" #include "base/memory/ref_counted.h" #include "base/run_loop.h" #include "base/single_thread_task_runner.h" #include "base/synchronization/waitable_event.h" #include "base/threading/thread.h" namespace base { namespace test { namespace { class Foo : public RefCounted<Foo> { public: Foo() : test_count_(0) { } void Test0() { ++test_count_; } void Test1ConstRef(const std::string& a) { ++test_count_; result_.append(a); } void Test1Ptr(std::string* a) { ++test_count_; result_.append(*a); } void Test1Int(int a) { test_count_ += a; } void Test2Ptr(std::string* a, std::string* b) { ++test_count_; result_.append(*a); result_.append(*b); } void Test2Mixed(const std::string& a, std::string* b) { ++test_count_; result_.append(a); result_.append(*b); } int test_count() const { return test_count_; } const std::string& result() const { return result_; } private: friend class RefCounted<Foo>; ~Foo() {} int test_count_; std::string result_; DISALLOW_COPY_AND_ASSIGN(Foo); }; // This function runs slowly to simulate a large amount of work being done. void SlowFunc(TimeDelta pause, int* quit_counter) { PlatformThread::Sleep(pause); if (--(*quit_counter) == 0) MessageLoop::current()->QuitWhenIdle(); } // This function records the time when Run was called in a Time object, which is // useful for building a variety of MessageLoop tests. // TODO(sky): remove? void RecordRunTimeFunc(Time* run_time, int* quit_counter) { *run_time = Time::Now(); // Cause our Run function to take some time to execute. As a result we can // count on subsequent RecordRunTimeFunc()s running at a future time, // without worry about the resolution of our system clock being an issue. SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter); } } // namespace void RunTest_PostTask(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); // Add tests to message loop scoped_refptr<Foo> foo(new Foo()); std::string a("a"), b("b"), c("c"), d("d"); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, Bind(&Foo::Test0, foo.get())); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&Foo::Test1ConstRef, foo.get(), a)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&Foo::Test1Ptr, foo.get(), &b)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&Foo::Test1Int, foo.get(), 100)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&Foo::Test2Ptr, foo.get(), &a, &c)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&Foo::Test2Mixed, foo.get(), a, &d)); // After all tests, post a message that will shut down the message loop MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&MessageLoop::QuitWhenIdle, Unretained(MessageLoop::current()))); // Now kick things off RunLoop().Run(); EXPECT_EQ(foo->test_count(), 105); EXPECT_EQ(foo->result(), "abacad"); } void RunTest_PostDelayedTask_Basic(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); // Test that PostDelayedTask results in a delayed task. const TimeDelta kDelay = TimeDelta::FromMilliseconds(100); int num_tasks = 1; Time run_time; loop.task_runner()->PostDelayedTask( FROM_HERE, Bind(&RecordRunTimeFunc, &run_time, &num_tasks), kDelay); Time time_before_run = Time::Now(); RunLoop().Run(); Time time_after_run = Time::Now(); EXPECT_EQ(0, num_tasks); EXPECT_LT(kDelay, time_after_run - time_before_run); } void RunTest_PostDelayedTask_InDelayOrder(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); // Test that two tasks with different delays run in the right order. int num_tasks = 2; Time run_time1, run_time2; loop.task_runner()->PostDelayedTask( FROM_HERE, Bind(&RecordRunTimeFunc, &run_time1, &num_tasks), TimeDelta::FromMilliseconds(200)); // If we get a large pause in execution (due to a context switch) here, this // test could fail. loop.task_runner()->PostDelayedTask( FROM_HERE, Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), TimeDelta::FromMilliseconds(10)); RunLoop().Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time2 < run_time1); } void RunTest_PostDelayedTask_InPostOrder(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); // Test that two tasks with the same delay run in the order in which they // were posted. // // NOTE: This is actually an approximate test since the API only takes a // "delay" parameter, so we are not exactly simulating two tasks that get // posted at the exact same time. It would be nice if the API allowed us to // specify the desired run time. const TimeDelta kDelay = TimeDelta::FromMilliseconds(100); int num_tasks = 2; Time run_time1, run_time2; loop.task_runner()->PostDelayedTask( FROM_HERE, Bind(&RecordRunTimeFunc, &run_time1, &num_tasks), kDelay); loop.task_runner()->PostDelayedTask( FROM_HERE, Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), kDelay); RunLoop().Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time1 < run_time2); } void RunTest_PostDelayedTask_InPostOrder_2(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); // Test that a delayed task still runs after a normal tasks even if the // normal tasks take a long time to run. const TimeDelta kPause = TimeDelta::FromMilliseconds(50); int num_tasks = 2; Time run_time; loop.task_runner()->PostTask(FROM_HERE, Bind(&SlowFunc, kPause, &num_tasks)); loop.task_runner()->PostDelayedTask( FROM_HERE, Bind(&RecordRunTimeFunc, &run_time, &num_tasks), TimeDelta::FromMilliseconds(10)); Time time_before_run = Time::Now(); RunLoop().Run(); Time time_after_run = Time::Now(); EXPECT_EQ(0, num_tasks); EXPECT_LT(kPause, time_after_run - time_before_run); } void RunTest_PostDelayedTask_InPostOrder_3(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); // Test that a delayed task still runs after a pile of normal tasks. The key // difference between this test and the previous one is that here we return // the MessageLoop a lot so we give the MessageLoop plenty of opportunities // to maybe run the delayed task. It should know not to do so until the // delayed task's delay has passed. int num_tasks = 11; Time run_time1, run_time2; // Clutter the ML with tasks. for (int i = 1; i < num_tasks; ++i) loop.task_runner()->PostTask( FROM_HERE, Bind(&RecordRunTimeFunc, &run_time1, &num_tasks)); loop.task_runner()->PostDelayedTask( FROM_HERE, Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), TimeDelta::FromMilliseconds(1)); RunLoop().Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time2 > run_time1); } void RunTest_PostDelayedTask_SharedTimer(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); // Test that the interval of the timer, used to run the next delayed task, is // set to a value corresponding to when the next delayed task should run. // By setting num_tasks to 1, we ensure that the first task to run causes the // run loop to exit. int num_tasks = 1; Time run_time1, run_time2; loop.task_runner()->PostDelayedTask( FROM_HERE, Bind(&RecordRunTimeFunc, &run_time1, &num_tasks), TimeDelta::FromSeconds(1000)); loop.task_runner()->PostDelayedTask( FROM_HERE, Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), TimeDelta::FromMilliseconds(10)); Time start_time = Time::Now(); RunLoop().Run(); EXPECT_EQ(0, num_tasks); // Ensure that we ran in far less time than the slower timer. TimeDelta total_time = Time::Now() - start_time; EXPECT_GT(5000, total_time.InMilliseconds()); // In case both timers somehow run at nearly the same time, sleep a little // and then run all pending to force them both to have run. This is just // encouraging flakiness if there is any. PlatformThread::Sleep(TimeDelta::FromMilliseconds(100)); RunLoop().RunUntilIdle(); EXPECT_TRUE(run_time1.is_null()); EXPECT_FALSE(run_time2.is_null()); } // This is used to inject a test point for recording the destructor calls for // Closure objects send to MessageLoop::PostTask(). It is awkward usage since we // are trying to hook the actual destruction, which is not a common operation. class RecordDeletionProbe : public RefCounted<RecordDeletionProbe> { public: RecordDeletionProbe(RecordDeletionProbe* post_on_delete, bool* was_deleted) : post_on_delete_(post_on_delete), was_deleted_(was_deleted) { } void Run() {} private: friend class RefCounted<RecordDeletionProbe>; ~RecordDeletionProbe() { *was_deleted_ = true; if (post_on_delete_.get()) MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&RecordDeletionProbe::Run, post_on_delete_.get())); } scoped_refptr<RecordDeletionProbe> post_on_delete_; bool* was_deleted_; }; void RunTest_EnsureDeletion(MessagePumpFactory factory) { bool a_was_deleted = false; bool b_was_deleted = false; { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); loop.task_runner()->PostTask( FROM_HERE, Bind(&RecordDeletionProbe::Run, new RecordDeletionProbe(NULL, &a_was_deleted))); // TODO(ajwong): Do we really need 1000ms here? loop.task_runner()->PostDelayedTask( FROM_HERE, Bind(&RecordDeletionProbe::Run, new RecordDeletionProbe(NULL, &b_was_deleted)), TimeDelta::FromMilliseconds(1000)); } EXPECT_TRUE(a_was_deleted); EXPECT_TRUE(b_was_deleted); } void RunTest_EnsureDeletion_Chain(MessagePumpFactory factory) { bool a_was_deleted = false; bool b_was_deleted = false; bool c_was_deleted = false; { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); // The scoped_refptr for each of the below is held either by the chained // RecordDeletionProbe, or the bound RecordDeletionProbe::Run() callback. RecordDeletionProbe* a = new RecordDeletionProbe(NULL, &a_was_deleted); RecordDeletionProbe* b = new RecordDeletionProbe(a, &b_was_deleted); RecordDeletionProbe* c = new RecordDeletionProbe(b, &c_was_deleted); loop.task_runner()->PostTask(FROM_HERE, Bind(&RecordDeletionProbe::Run, c)); } EXPECT_TRUE(a_was_deleted); EXPECT_TRUE(b_was_deleted); EXPECT_TRUE(c_was_deleted); } void NestingFunc(int* depth) { if (*depth > 0) { *depth -= 1; MessageLoop::current()->task_runner()->PostTask(FROM_HERE, Bind(&NestingFunc, depth)); MessageLoop::current()->SetNestableTasksAllowed(true); RunLoop().Run(); } MessageLoop::current()->QuitWhenIdle(); } void RunTest_Nesting(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); int depth = 100; MessageLoop::current()->task_runner()->PostTask(FROM_HERE, Bind(&NestingFunc, &depth)); RunLoop().Run(); EXPECT_EQ(depth, 0); } // A NestingObserver that tracks the number of nested message loop starts it // has seen. class TestNestingObserver : public MessageLoop::NestingObserver { public: TestNestingObserver() {} ~TestNestingObserver() override {} int begin_nested_loop_count() const { return begin_nested_loop_count_; } // MessageLoop::NestingObserver: void OnBeginNestedMessageLoop() override { begin_nested_loop_count_++; } private: int begin_nested_loop_count_ = 0; DISALLOW_COPY_AND_ASSIGN(TestNestingObserver); }; void ExpectOneBeginNestedLoop(TestNestingObserver* observer) { EXPECT_EQ(1, observer->begin_nested_loop_count()); } // Starts a nested message loop. void RunNestedLoop(TestNestingObserver* observer, const Closure& quit_outer_loop) { // The nested loop hasn't started yet. EXPECT_EQ(0, observer->begin_nested_loop_count()); MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current()); RunLoop nested_loop; // Verify that by the time the first task is run the observer has seen the // message loop begin. MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&ExpectOneBeginNestedLoop, observer)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, nested_loop.QuitClosure()); nested_loop.Run(); // Quitting message loops doesn't change the begin count. EXPECT_EQ(1, observer->begin_nested_loop_count()); quit_outer_loop.Run(); } // Tests that a NestingObserver is notified when a nested message loop begins. void RunTest_NestingObserver(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop outer_loop(std::move(pump)); // Observe the outer loop for nested message loops beginning. TestNestingObserver nesting_observer; outer_loop.AddNestingObserver(&nesting_observer); // Post a task that runs a nested message loop. outer_loop.task_runner()->PostTask(FROM_HERE, Bind(&RunNestedLoop, &nesting_observer, outer_loop.QuitWhenIdleClosure())); RunLoop().Run(); outer_loop.RemoveNestingObserver(&nesting_observer); } enum TaskType { MESSAGEBOX, ENDDIALOG, RECURSIVE, TIMEDMESSAGELOOP, QUITMESSAGELOOP, ORDERED, PUMPS, SLEEP, RUNS, }; struct TaskItem { TaskItem(TaskType t, int c, bool s) : type(t), cookie(c), start(s) { } TaskType type; int cookie; bool start; bool operator == (const TaskItem& other) const { return type == other.type && cookie == other.cookie && start == other.start; } }; std::ostream& operator <<(std::ostream& os, TaskType type) { switch (type) { case MESSAGEBOX: os << "MESSAGEBOX"; break; case ENDDIALOG: os << "ENDDIALOG"; break; case RECURSIVE: os << "RECURSIVE"; break; case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break; case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break; case ORDERED: os << "ORDERED"; break; case PUMPS: os << "PUMPS"; break; case SLEEP: os << "SLEEP"; break; default: NOTREACHED(); os << "Unknown TaskType"; break; } return os; } std::ostream& operator <<(std::ostream& os, const TaskItem& item) { if (item.start) return os << item.type << " " << item.cookie << " starts"; else return os << item.type << " " << item.cookie << " ends"; } class TaskList { public: void RecordStart(TaskType type, int cookie) { TaskItem item(type, cookie, true); DVLOG(1) << item; task_list_.push_back(item); } void RecordEnd(TaskType type, int cookie) { TaskItem item(type, cookie, false); DVLOG(1) << item; task_list_.push_back(item); } size_t Size() { return task_list_.size(); } TaskItem Get(int n) { return task_list_[n]; } private: std::vector<TaskItem> task_list_; }; void RecursiveFunc(TaskList* order, int cookie, int depth, bool is_reentrant) { order->RecordStart(RECURSIVE, cookie); if (depth > 0) { if (is_reentrant) MessageLoop::current()->SetNestableTasksAllowed(true); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant)); } order->RecordEnd(RECURSIVE, cookie); } void QuitFunc(TaskList* order, int cookie) { order->RecordStart(QUITMESSAGELOOP, cookie); MessageLoop::current()->QuitWhenIdle(); order->RecordEnd(QUITMESSAGELOOP, cookie); } void RunTest_RecursiveDenial1(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed()); TaskList order; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&RecursiveFunc, &order, 1, 2, false)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&RecursiveFunc, &order, 2, 2, false)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, Bind(&QuitFunc, &order, 3)); RunLoop().Run(); // FIFO order. ASSERT_EQ(14U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false)); } void RecursiveSlowFunc(TaskList* order, int cookie, int depth, bool is_reentrant) { RecursiveFunc(order, cookie, depth, is_reentrant); PlatformThread::Sleep(TimeDelta::FromMilliseconds(10)); } void OrderedFunc(TaskList* order, int cookie) { order->RecordStart(ORDERED, cookie); order->RecordEnd(ORDERED, cookie); } void RunTest_RecursiveDenial3(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed()); TaskList order; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&RecursiveSlowFunc, &order, 1, 2, false)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&RecursiveSlowFunc, &order, 2, 2, false)); MessageLoop::current()->task_runner()->PostDelayedTask( FROM_HERE, Bind(&OrderedFunc, &order, 3), TimeDelta::FromMilliseconds(5)); MessageLoop::current()->task_runner()->PostDelayedTask( FROM_HERE, Bind(&QuitFunc, &order, 4), TimeDelta::FromMilliseconds(5)); RunLoop().Run(); // FIFO order. ASSERT_EQ(16U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 3, true)); EXPECT_EQ(order.Get(7), TaskItem(ORDERED, 3, false)); EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 4, true)); EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 4, false)); EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 2, false)); } void RunTest_RecursiveSupport1(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&RecursiveFunc, &order, 1, 2, true)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&RecursiveFunc, &order, 2, 2, true)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, Bind(&QuitFunc, &order, 3)); RunLoop().Run(); // FIFO order. ASSERT_EQ(14U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false)); } // Tests that non nestable tasks run in FIFO if there are no nested loops. void RunTest_NonNestableWithNoNesting(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; MessageLoop::current()->task_runner()->PostNonNestableTask( FROM_HERE, Bind(&OrderedFunc, &order, 1)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 2)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, Bind(&QuitFunc, &order, 3)); RunLoop().Run(); // FIFO order. ASSERT_EQ(6U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(ORDERED, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); } void FuncThatPumps(TaskList* order, int cookie) { order->RecordStart(PUMPS, cookie); { MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current()); RunLoop().RunUntilIdle(); } order->RecordEnd(PUMPS, cookie); } void SleepFunc(TaskList* order, int cookie, TimeDelta delay) { order->RecordStart(SLEEP, cookie); PlatformThread::Sleep(delay); order->RecordEnd(SLEEP, cookie); } // Tests that non nestable tasks don't run when there's code in the call stack. void RunTest_NonNestableInNestedLoop(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatPumps, &order, 1)); MessageLoop::current()->task_runner()->PostNonNestableTask( FROM_HERE, Bind(&OrderedFunc, &order, 2)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 3)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&SleepFunc, &order, 4, TimeDelta::FromMilliseconds(50))); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 5)); MessageLoop::current()->task_runner()->PostNonNestableTask( FROM_HERE, Bind(&QuitFunc, &order, 6)); RunLoop().Run(); // FIFO order. ASSERT_EQ(12U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(PUMPS, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 3, true)); EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 3, false)); EXPECT_EQ(order.Get(3), TaskItem(SLEEP, 4, true)); EXPECT_EQ(order.Get(4), TaskItem(SLEEP, 4, false)); EXPECT_EQ(order.Get(5), TaskItem(ORDERED, 5, true)); EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 5, false)); EXPECT_EQ(order.Get(7), TaskItem(PUMPS, 1, false)); EXPECT_EQ(order.Get(8), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 6, true)); EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 6, false)); } void FuncThatRuns(TaskList* order, int cookie, RunLoop* run_loop) { order->RecordStart(RUNS, cookie); { MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current()); run_loop->Run(); } order->RecordEnd(RUNS, cookie); } void FuncThatQuitsNow() { MessageLoop::current()->QuitNow(); } // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. void RunTest_QuitNow(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; RunLoop run_loop; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&run_loop))); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 2)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, Bind(&FuncThatQuitsNow)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 3)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, Bind(&FuncThatQuitsNow)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 4)); // never runs RunLoop().Run(); ASSERT_EQ(6U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false)); EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); } // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. void RunTest_RunLoopQuitTop(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; RunLoop outer_run_loop; RunLoop nested_run_loop; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, outer_run_loop.QuitClosure()); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 2)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, nested_run_loop.QuitClosure()); outer_run_loop.Run(); ASSERT_EQ(4U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); } // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. void RunTest_RunLoopQuitNested(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; RunLoop outer_run_loop; RunLoop nested_run_loop; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, nested_run_loop.QuitClosure()); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 2)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, outer_run_loop.QuitClosure()); outer_run_loop.Run(); ASSERT_EQ(4U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); } // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. void RunTest_RunLoopQuitBogus(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; RunLoop outer_run_loop; RunLoop nested_run_loop; RunLoop bogus_run_loop; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, bogus_run_loop.QuitClosure()); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 2)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, outer_run_loop.QuitClosure()); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, nested_run_loop.QuitClosure()); outer_run_loop.Run(); ASSERT_EQ(4U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); } // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. void RunTest_RunLoopQuitDeep(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; RunLoop outer_run_loop; RunLoop nested_loop1; RunLoop nested_loop2; RunLoop nested_loop3; RunLoop nested_loop4; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&nested_loop1))); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatRuns, &order, 2, Unretained(&nested_loop2))); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatRuns, &order, 3, Unretained(&nested_loop3))); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatRuns, &order, 4, Unretained(&nested_loop4))); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 5)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, outer_run_loop.QuitClosure()); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 6)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, nested_loop1.QuitClosure()); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 7)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, nested_loop2.QuitClosure()); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 8)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, nested_loop3.QuitClosure()); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 9)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, nested_loop4.QuitClosure()); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 10)); outer_run_loop.Run(); ASSERT_EQ(18U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); } // Tests RunLoopQuit works before RunWithID. void RunTest_RunLoopQuitOrderBefore(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; RunLoop run_loop; run_loop.Quit(); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 1)); // never runs MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatQuitsNow)); // never runs run_loop.Run(); ASSERT_EQ(0U, order.Size()); } // Tests RunLoopQuit works during RunWithID. void RunTest_RunLoopQuitOrderDuring(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; RunLoop run_loop; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 1)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, run_loop.QuitClosure()); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 2)); // never runs MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatQuitsNow)); // never runs run_loop.Run(); ASSERT_EQ(2U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, false)); EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); } // Tests RunLoopQuit works after RunWithID. void RunTest_RunLoopQuitOrderAfter(MessagePumpFactory factory) { std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); TaskList order; RunLoop run_loop; MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&FuncThatRuns, &order, 1, Unretained(&run_loop))); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 2)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, Bind(&FuncThatQuitsNow)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 3)); MessageLoop::current()->task_runner()->PostTask( FROM_HERE, run_loop.QuitClosure()); // has no affect MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&OrderedFunc, &order, 4)); MessageLoop::current()->task_runner()->PostTask(FROM_HERE, Bind(&FuncThatQuitsNow)); RunLoop outer_run_loop; outer_run_loop.Run(); ASSERT_EQ(8U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, false)); EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); } void PostNTasksThenQuit(int posts_remaining) { if (posts_remaining > 1) { MessageLoop::current()->task_runner()->PostTask( FROM_HERE, Bind(&PostNTasksThenQuit, posts_remaining - 1)); } else { MessageLoop::current()->QuitWhenIdle(); } } // There was a bug in the MessagePumpGLib where posting tasks recursively // caused the message loop to hang, due to the buffer of the internal pipe // becoming full. Test all MessageLoop types to ensure this issue does not // exist in other MessagePumps. // // On Linux, the pipe buffer size is 64KiB by default. The bug caused one // byte accumulated in the pipe per two posts, so we should repeat 128K // times to reproduce the bug. void RunTest_RecursivePosts(MessagePumpFactory factory) { const int kNumTimes = 1 << 17; std::unique_ptr<MessagePump> pump(factory()); MessageLoop loop(std::move(pump)); loop.task_runner()->PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumTimes)); RunLoop().Run(); } } // namespace test } // namespace base