/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "calibration/magnetometer/mag_cal.h"
#include <errno.h>
#include <nanohub_math.h>
#include <string.h>
#ifdef MAG_CAL_ORIGINAL_TUNING
#define MAX_EIGEN_RATIO 25.0f
#define MAX_EIGEN_MAG 80.0f // uT
#define MIN_EIGEN_MAG 10.0f // uT
#define MAX_FIT_MAG 80.0f
#define MIN_FIT_MAG 10.0f
#define MIN_BATCH_WINDOW 1000000UL // 1 sec
#define MAX_BATCH_WINDOW 15000000UL // 15 sec
#define MIN_BATCH_SIZE 25 // samples
#else
#define MAX_EIGEN_RATIO 15.0f
#define MAX_EIGEN_MAG 70.0f // uT
#define MIN_EIGEN_MAG 20.0f // uT
#define MAX_FIT_MAG 70.0f
#define MIN_FIT_MAG 20.0f
#define MIN_BATCH_WINDOW 3000000UL // 3 sec
#define MAX_BATCH_WINDOW 15000000UL // 15 sec
#define MIN_BATCH_SIZE 25 // samples
#endif
#ifdef DIVERSITY_CHECK_ENABLED
#define MAX_DISTANCE_VIOLATIONS 2
#endif
// eigen value magnitude and ratio test
static int moc_eigen_test(struct KasaFit *kasa) {
// covariance matrix
struct Mat33 S;
S.elem[0][0] = kasa->acc_xx - kasa->acc_x * kasa->acc_x;
S.elem[0][1] = S.elem[1][0] = kasa->acc_xy - kasa->acc_x * kasa->acc_y;
S.elem[0][2] = S.elem[2][0] = kasa->acc_xz - kasa->acc_x * kasa->acc_z;
S.elem[1][1] = kasa->acc_yy - kasa->acc_y * kasa->acc_y;
S.elem[1][2] = S.elem[2][1] = kasa->acc_yz - kasa->acc_y * kasa->acc_z;
S.elem[2][2] = kasa->acc_zz - kasa->acc_z * kasa->acc_z;
struct Vec3 eigenvals;
struct Mat33 eigenvecs;
mat33GetEigenbasis(&S, &eigenvals, &eigenvecs);
float evmax = (eigenvals.x > eigenvals.y) ? eigenvals.x : eigenvals.y;
evmax = (eigenvals.z > evmax) ? eigenvals.z : evmax;
float evmin = (eigenvals.x < eigenvals.y) ? eigenvals.x : eigenvals.y;
evmin = (eigenvals.z < evmin) ? eigenvals.z : evmin;
float evmag = sqrtf(eigenvals.x + eigenvals.y + eigenvals.z);
int eigen_pass = (evmin * MAX_EIGEN_RATIO > evmax) &&
(evmag > MIN_EIGEN_MAG) && (evmag < MAX_EIGEN_MAG);
return eigen_pass;
}
// Kasa sphere fitting with normal equation
int magKasaFit(struct KasaFit *kasa, struct Vec3 *bias, float *radius) {
// A * out = b
// (4 x 4) (4 x 1) (4 x 1)
struct Mat44 A;
A.elem[0][0] = kasa->acc_xx;
A.elem[0][1] = kasa->acc_xy;
A.elem[0][2] = kasa->acc_xz;
A.elem[0][3] = kasa->acc_x;
A.elem[1][0] = kasa->acc_xy;
A.elem[1][1] = kasa->acc_yy;
A.elem[1][2] = kasa->acc_yz;
A.elem[1][3] = kasa->acc_y;
A.elem[2][0] = kasa->acc_xz;
A.elem[2][1] = kasa->acc_yz;
A.elem[2][2] = kasa->acc_zz;
A.elem[2][3] = kasa->acc_z;
A.elem[3][0] = kasa->acc_x;
A.elem[3][1] = kasa->acc_y;
A.elem[3][2] = kasa->acc_z;
A.elem[3][3] = 1.0f;
struct Vec4 b;
initVec4(&b, -kasa->acc_xw, -kasa->acc_yw, -kasa->acc_zw, -kasa->acc_w);
struct Size4 pivot;
mat44DecomposeLup(&A, &pivot);
struct Vec4 out;
mat44Solve(&A, &out, &b, &pivot);
// sphere: (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2
//
// xc = -out[0] / 2, yc = -out[1] / 2, zc = -out[2] / 2
// r = sqrt(xc^2 + yc^2 + zc^2 - out[3])
struct Vec3 v;
initVec3(&v, out.x, out.y, out.z);
vec3ScalarMul(&v, -0.5f);
float r = sqrtf(vec3Dot(&v, &v) - out.w);
initVec3(bias, v.x, v.y, v.z);
*radius = r;
int success = 0;
if (r > MIN_FIT_MAG && r < MAX_FIT_MAG) {
success = 1;
}
return success;
}
void magKasaReset(struct KasaFit *kasa) {
kasa->acc_x = kasa->acc_y = kasa->acc_z = kasa->acc_w = 0.0f;
kasa->acc_xx = kasa->acc_xy = kasa->acc_xz = kasa->acc_xw = 0.0f;
kasa->acc_yy = kasa->acc_yz = kasa->acc_yw = 0.0f;
kasa->acc_zz = kasa->acc_zw = 0.0f;
kasa->nsamples = 0;
}
void magCalReset(struct MagCal *moc) {
magKasaReset(&moc->kasa);
#ifdef DIVERSITY_CHECK_ENABLED
diversityCheckerReset(&moc->diversity_checker);
#endif
moc->start_time = 0;
}
static int moc_batch_complete(struct MagCal *moc, uint64_t sample_time_us) {
int complete = 0;
if ((sample_time_us - moc->start_time > MIN_BATCH_WINDOW) &&
(moc->kasa.nsamples > MIN_BATCH_SIZE)) {
complete = 1;
} else if (sample_time_us - moc->start_time > MAX_BATCH_WINDOW) {
// not enough samples collected in MAX_BATCH_WINDOW or too many
// maximum distance violations detected.
magCalReset(moc);
}
return complete;
}
void initKasa(struct KasaFit *kasa) {
magKasaReset(kasa);
}
void initMagCal(struct MagCal *moc, float x_bias, float y_bias, float z_bias,
float c00, float c01, float c02, float c10, float c11,
float c12, float c20, float c21, float c22
#ifdef DIVERSITY_CHECK_ENABLED
,size_t min_num_diverse_vectors
,size_t max_num_max_distance
,float var_threshold
,float max_min_threshold
,float local_field
,float threshold_tuning_param
,float max_distance_tuning_param
#endif
) {
magCalReset(moc);
moc->update_time = 0;
moc->radius = 0.0f;
moc->x_bias = x_bias;
moc->y_bias = y_bias;
moc->z_bias = z_bias;
moc->c00 = c00;
moc->c01 = c01;
moc->c02 = c02;
moc->c10 = c10;
moc->c11 = c11;
moc->c12 = c12;
moc->c20 = c20;
moc->c21 = c21;
moc->c22 = c22;
#ifdef DIVERSITY_CHECK_ENABLED
// Diversity Checker Init
diversityCheckerInit(&moc->diversity_checker,
min_num_diverse_vectors,
max_num_max_distance,
var_threshold,
max_min_threshold,
local_field,
threshold_tuning_param,
max_distance_tuning_param);
#endif
}
void magCalDestroy(struct MagCal *moc) { (void)moc; }
bool magCalUpdate(struct MagCal *moc, uint64_t sample_time_us, float x, float y,
float z) {
bool new_bias = false;
#ifdef DIVERSITY_CHECK_ENABLED
// Diversity Checker Update.
diversityCheckerUpdate(&moc->diversity_checker, x, y, z);
#endif
// 1. run accumulators
float w = x * x + y * y + z * z;
moc->kasa.acc_x += x;
moc->kasa.acc_y += y;
moc->kasa.acc_z += z;
moc->kasa.acc_w += w;
moc->kasa.acc_xx += x * x;
moc->kasa.acc_xy += x * y;
moc->kasa.acc_xz += x * z;
moc->kasa.acc_xw += x * w;
moc->kasa.acc_yy += y * y;
moc->kasa.acc_yz += y * z;
moc->kasa.acc_yw += y * w;
moc->kasa.acc_zz += z * z;
moc->kasa.acc_zw += z * w;
if (++moc->kasa.nsamples == 1) {
moc->start_time = sample_time_us;
}
// 2. batch has enough samples?
if (moc_batch_complete(moc, sample_time_us)) {
float inv = 1.0f / moc->kasa.nsamples;
moc->kasa.acc_x *= inv;
moc->kasa.acc_y *= inv;
moc->kasa.acc_z *= inv;
moc->kasa.acc_w *= inv;
moc->kasa.acc_xx *= inv;
moc->kasa.acc_xy *= inv;
moc->kasa.acc_xz *= inv;
moc->kasa.acc_xw *= inv;
moc->kasa.acc_yy *= inv;
moc->kasa.acc_yz *= inv;
moc->kasa.acc_yw *= inv;
moc->kasa.acc_zz *= inv;
moc->kasa.acc_zw *= inv;
// 3. eigen test
if (moc_eigen_test(&moc->kasa)) {
struct Vec3 bias;
float radius;
// 4. Kasa sphere fitting
if (magKasaFit(&moc->kasa, &bias, &radius)) {
#ifdef DIVERSITY_CHECK_ENABLED
diversityCheckerLocalFieldUpdate(&moc->diversity_checker,
radius);
if (diversityCheckerNormQuality(&moc->diversity_checker,
bias.x,
bias.y,
bias.z) &&
moc->diversity_checker.num_max_dist_violations
<= MAX_DISTANCE_VIOLATIONS) {
#endif
moc->x_bias = bias.x;
moc->y_bias = bias.y;
moc->z_bias = bias.z;
moc->radius = radius;
moc->update_time = sample_time_us;
new_bias = true;
#ifdef DIVERSITY_CHECK_ENABLED
}
#endif
}
}
// 5. reset for next batch
magCalReset(moc);
}
return new_bias;
}
void magCalGetBias(struct MagCal *moc, float *x, float *y, float *z) {
*x = moc->x_bias;
*y = moc->y_bias;
*z = moc->z_bias;
}
void magCalAddBias(struct MagCal *moc, float x, float y, float z) {
moc->x_bias += x;
moc->y_bias += y;
moc->z_bias += z;
}
void magCalRemoveBias(struct MagCal *moc, float xi, float yi, float zi,
float *xo, float *yo, float *zo) {
*xo = xi - moc->x_bias;
*yo = yi - moc->y_bias;
*zo = zi - moc->z_bias;
}
void magCalSetSoftiron(struct MagCal *moc, float c00, float c01, float c02,
float c10, float c11, float c12, float c20, float c21,
float c22) {
moc->c00 = c00;
moc->c01 = c01;
moc->c02 = c02;
moc->c10 = c10;
moc->c11 = c11;
moc->c12 = c12;
moc->c20 = c20;
moc->c21 = c21;
moc->c22 = c22;
}
void magCalRemoveSoftiron(struct MagCal *moc, float xi, float yi, float zi,
float *xo, float *yo, float *zo) {
*xo = moc->c00 * xi + moc->c01 * yi + moc->c02 * zi;
*yo = moc->c10 * xi + moc->c11 * yi + moc->c12 * zi;
*zo = moc->c20 * xi + moc->c21 * yi + moc->c22 * zi;
}