/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "calibration/magnetometer/mag_cal.h" #include <errno.h> #include <nanohub_math.h> #include <string.h> #ifdef MAG_CAL_ORIGINAL_TUNING #define MAX_EIGEN_RATIO 25.0f #define MAX_EIGEN_MAG 80.0f // uT #define MIN_EIGEN_MAG 10.0f // uT #define MAX_FIT_MAG 80.0f #define MIN_FIT_MAG 10.0f #define MIN_BATCH_WINDOW 1000000UL // 1 sec #define MAX_BATCH_WINDOW 15000000UL // 15 sec #define MIN_BATCH_SIZE 25 // samples #else #define MAX_EIGEN_RATIO 15.0f #define MAX_EIGEN_MAG 70.0f // uT #define MIN_EIGEN_MAG 20.0f // uT #define MAX_FIT_MAG 70.0f #define MIN_FIT_MAG 20.0f #define MIN_BATCH_WINDOW 3000000UL // 3 sec #define MAX_BATCH_WINDOW 15000000UL // 15 sec #define MIN_BATCH_SIZE 25 // samples #endif #ifdef DIVERSITY_CHECK_ENABLED #define MAX_DISTANCE_VIOLATIONS 2 #endif // eigen value magnitude and ratio test static int moc_eigen_test(struct KasaFit *kasa) { // covariance matrix struct Mat33 S; S.elem[0][0] = kasa->acc_xx - kasa->acc_x * kasa->acc_x; S.elem[0][1] = S.elem[1][0] = kasa->acc_xy - kasa->acc_x * kasa->acc_y; S.elem[0][2] = S.elem[2][0] = kasa->acc_xz - kasa->acc_x * kasa->acc_z; S.elem[1][1] = kasa->acc_yy - kasa->acc_y * kasa->acc_y; S.elem[1][2] = S.elem[2][1] = kasa->acc_yz - kasa->acc_y * kasa->acc_z; S.elem[2][2] = kasa->acc_zz - kasa->acc_z * kasa->acc_z; struct Vec3 eigenvals; struct Mat33 eigenvecs; mat33GetEigenbasis(&S, &eigenvals, &eigenvecs); float evmax = (eigenvals.x > eigenvals.y) ? eigenvals.x : eigenvals.y; evmax = (eigenvals.z > evmax) ? eigenvals.z : evmax; float evmin = (eigenvals.x < eigenvals.y) ? eigenvals.x : eigenvals.y; evmin = (eigenvals.z < evmin) ? eigenvals.z : evmin; float evmag = sqrtf(eigenvals.x + eigenvals.y + eigenvals.z); int eigen_pass = (evmin * MAX_EIGEN_RATIO > evmax) && (evmag > MIN_EIGEN_MAG) && (evmag < MAX_EIGEN_MAG); return eigen_pass; } // Kasa sphere fitting with normal equation int magKasaFit(struct KasaFit *kasa, struct Vec3 *bias, float *radius) { // A * out = b // (4 x 4) (4 x 1) (4 x 1) struct Mat44 A; A.elem[0][0] = kasa->acc_xx; A.elem[0][1] = kasa->acc_xy; A.elem[0][2] = kasa->acc_xz; A.elem[0][3] = kasa->acc_x; A.elem[1][0] = kasa->acc_xy; A.elem[1][1] = kasa->acc_yy; A.elem[1][2] = kasa->acc_yz; A.elem[1][3] = kasa->acc_y; A.elem[2][0] = kasa->acc_xz; A.elem[2][1] = kasa->acc_yz; A.elem[2][2] = kasa->acc_zz; A.elem[2][3] = kasa->acc_z; A.elem[3][0] = kasa->acc_x; A.elem[3][1] = kasa->acc_y; A.elem[3][2] = kasa->acc_z; A.elem[3][3] = 1.0f; struct Vec4 b; initVec4(&b, -kasa->acc_xw, -kasa->acc_yw, -kasa->acc_zw, -kasa->acc_w); struct Size4 pivot; mat44DecomposeLup(&A, &pivot); struct Vec4 out; mat44Solve(&A, &out, &b, &pivot); // sphere: (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2 // // xc = -out[0] / 2, yc = -out[1] / 2, zc = -out[2] / 2 // r = sqrt(xc^2 + yc^2 + zc^2 - out[3]) struct Vec3 v; initVec3(&v, out.x, out.y, out.z); vec3ScalarMul(&v, -0.5f); float r = sqrtf(vec3Dot(&v, &v) - out.w); initVec3(bias, v.x, v.y, v.z); *radius = r; int success = 0; if (r > MIN_FIT_MAG && r < MAX_FIT_MAG) { success = 1; } return success; } void magKasaReset(struct KasaFit *kasa) { kasa->acc_x = kasa->acc_y = kasa->acc_z = kasa->acc_w = 0.0f; kasa->acc_xx = kasa->acc_xy = kasa->acc_xz = kasa->acc_xw = 0.0f; kasa->acc_yy = kasa->acc_yz = kasa->acc_yw = 0.0f; kasa->acc_zz = kasa->acc_zw = 0.0f; kasa->nsamples = 0; } void magCalReset(struct MagCal *moc) { magKasaReset(&moc->kasa); #ifdef DIVERSITY_CHECK_ENABLED diversityCheckerReset(&moc->diversity_checker); #endif moc->start_time = 0; } static int moc_batch_complete(struct MagCal *moc, uint64_t sample_time_us) { int complete = 0; if ((sample_time_us - moc->start_time > MIN_BATCH_WINDOW) && (moc->kasa.nsamples > MIN_BATCH_SIZE)) { complete = 1; } else if (sample_time_us - moc->start_time > MAX_BATCH_WINDOW) { // not enough samples collected in MAX_BATCH_WINDOW or too many // maximum distance violations detected. magCalReset(moc); } return complete; } void initKasa(struct KasaFit *kasa) { magKasaReset(kasa); } void initMagCal(struct MagCal *moc, float x_bias, float y_bias, float z_bias, float c00, float c01, float c02, float c10, float c11, float c12, float c20, float c21, float c22 #ifdef DIVERSITY_CHECK_ENABLED ,size_t min_num_diverse_vectors ,size_t max_num_max_distance ,float var_threshold ,float max_min_threshold ,float local_field ,float threshold_tuning_param ,float max_distance_tuning_param #endif ) { magCalReset(moc); moc->update_time = 0; moc->radius = 0.0f; moc->x_bias = x_bias; moc->y_bias = y_bias; moc->z_bias = z_bias; moc->c00 = c00; moc->c01 = c01; moc->c02 = c02; moc->c10 = c10; moc->c11 = c11; moc->c12 = c12; moc->c20 = c20; moc->c21 = c21; moc->c22 = c22; #ifdef DIVERSITY_CHECK_ENABLED // Diversity Checker Init diversityCheckerInit(&moc->diversity_checker, min_num_diverse_vectors, max_num_max_distance, var_threshold, max_min_threshold, local_field, threshold_tuning_param, max_distance_tuning_param); #endif } void magCalDestroy(struct MagCal *moc) { (void)moc; } bool magCalUpdate(struct MagCal *moc, uint64_t sample_time_us, float x, float y, float z) { bool new_bias = false; #ifdef DIVERSITY_CHECK_ENABLED // Diversity Checker Update. diversityCheckerUpdate(&moc->diversity_checker, x, y, z); #endif // 1. run accumulators float w = x * x + y * y + z * z; moc->kasa.acc_x += x; moc->kasa.acc_y += y; moc->kasa.acc_z += z; moc->kasa.acc_w += w; moc->kasa.acc_xx += x * x; moc->kasa.acc_xy += x * y; moc->kasa.acc_xz += x * z; moc->kasa.acc_xw += x * w; moc->kasa.acc_yy += y * y; moc->kasa.acc_yz += y * z; moc->kasa.acc_yw += y * w; moc->kasa.acc_zz += z * z; moc->kasa.acc_zw += z * w; if (++moc->kasa.nsamples == 1) { moc->start_time = sample_time_us; } // 2. batch has enough samples? if (moc_batch_complete(moc, sample_time_us)) { float inv = 1.0f / moc->kasa.nsamples; moc->kasa.acc_x *= inv; moc->kasa.acc_y *= inv; moc->kasa.acc_z *= inv; moc->kasa.acc_w *= inv; moc->kasa.acc_xx *= inv; moc->kasa.acc_xy *= inv; moc->kasa.acc_xz *= inv; moc->kasa.acc_xw *= inv; moc->kasa.acc_yy *= inv; moc->kasa.acc_yz *= inv; moc->kasa.acc_yw *= inv; moc->kasa.acc_zz *= inv; moc->kasa.acc_zw *= inv; // 3. eigen test if (moc_eigen_test(&moc->kasa)) { struct Vec3 bias; float radius; // 4. Kasa sphere fitting if (magKasaFit(&moc->kasa, &bias, &radius)) { #ifdef DIVERSITY_CHECK_ENABLED diversityCheckerLocalFieldUpdate(&moc->diversity_checker, radius); if (diversityCheckerNormQuality(&moc->diversity_checker, bias.x, bias.y, bias.z) && moc->diversity_checker.num_max_dist_violations <= MAX_DISTANCE_VIOLATIONS) { #endif moc->x_bias = bias.x; moc->y_bias = bias.y; moc->z_bias = bias.z; moc->radius = radius; moc->update_time = sample_time_us; new_bias = true; #ifdef DIVERSITY_CHECK_ENABLED } #endif } } // 5. reset for next batch magCalReset(moc); } return new_bias; } void magCalGetBias(struct MagCal *moc, float *x, float *y, float *z) { *x = moc->x_bias; *y = moc->y_bias; *z = moc->z_bias; } void magCalAddBias(struct MagCal *moc, float x, float y, float z) { moc->x_bias += x; moc->y_bias += y; moc->z_bias += z; } void magCalRemoveBias(struct MagCal *moc, float xi, float yi, float zi, float *xo, float *yo, float *zo) { *xo = xi - moc->x_bias; *yo = yi - moc->y_bias; *zo = zi - moc->z_bias; } void magCalSetSoftiron(struct MagCal *moc, float c00, float c01, float c02, float c10, float c11, float c12, float c20, float c21, float c22) { moc->c00 = c00; moc->c01 = c01; moc->c02 = c02; moc->c10 = c10; moc->c11 = c11; moc->c12 = c12; moc->c20 = c20; moc->c21 = c21; moc->c22 = c22; } void magCalRemoveSoftiron(struct MagCal *moc, float xi, float yi, float zi, float *xo, float *yo, float *zo) { *xo = moc->c00 * xi + moc->c01 * yi + moc->c02 * zi; *yo = moc->c10 * xi + moc->c11 * yi + moc->c12 * zi; *zo = moc->c20 * xi + moc->c21 * yi + moc->c22 * zi; }