/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_VERIFIER_REGISTER_LINE_INL_H_
#define ART_RUNTIME_VERIFIER_REGISTER_LINE_INL_H_
#include "register_line.h"
#include "method_verifier.h"
#include "reg_type_cache-inl.h"
namespace art {
namespace verifier {
// Should we dump a warning on failures to verify balanced locking? That would be an indication to
// developers that their code will be slow.
static constexpr bool kDumpLockFailures = true;
inline const RegType& RegisterLine::GetRegisterType(MethodVerifier* verifier, uint32_t vsrc) const {
// The register index was validated during the static pass, so we don't need to check it here.
DCHECK_LT(vsrc, num_regs_);
return verifier->GetRegTypeCache()->GetFromId(line_[vsrc]);
}
template <LockOp kLockOp>
inline bool RegisterLine::SetRegisterType(MethodVerifier* verifier, uint32_t vdst,
const RegType& new_type) {
DCHECK_LT(vdst, num_regs_);
if (new_type.IsLowHalf() || new_type.IsHighHalf()) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected category1 register type not '"
<< new_type << "'";
return false;
} else {
// Note: previously we failed when asked to set a conflict. However, conflicts are OK as long
// as they are not accessed, and our backends can handle this nowadays.
line_[vdst] = new_type.GetId();
}
switch (kLockOp) {
case LockOp::kClear:
// Clear the monitor entry bits for this register.
ClearAllRegToLockDepths(vdst);
break;
case LockOp::kKeep:
// Should only be doing this with reference types.
DCHECK(new_type.IsReferenceTypes());
break;
}
return true;
}
inline bool RegisterLine::SetRegisterTypeWide(MethodVerifier* verifier, uint32_t vdst,
const RegType& new_type1,
const RegType& new_type2) {
DCHECK_LT(vdst + 1, num_regs_);
if (!new_type1.CheckWidePair(new_type2)) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Invalid wide pair '"
<< new_type1 << "' '" << new_type2 << "'";
return false;
} else {
line_[vdst] = new_type1.GetId();
line_[vdst + 1] = new_type2.GetId();
}
// Clear the monitor entry bits for this register.
ClearAllRegToLockDepths(vdst);
ClearAllRegToLockDepths(vdst + 1);
return true;
}
inline void RegisterLine::SetResultTypeToUnknown(MethodVerifier* verifier) {
result_[0] = verifier->GetRegTypeCache()->Undefined().GetId();
result_[1] = result_[0];
}
inline void RegisterLine::SetResultRegisterType(MethodVerifier* verifier, const RegType& new_type) {
DCHECK(!new_type.IsLowHalf());
DCHECK(!new_type.IsHighHalf());
result_[0] = new_type.GetId();
result_[1] = verifier->GetRegTypeCache()->Undefined().GetId();
}
inline void RegisterLine::SetResultRegisterTypeWide(const RegType& new_type1,
const RegType& new_type2) {
DCHECK(new_type1.CheckWidePair(new_type2));
result_[0] = new_type1.GetId();
result_[1] = new_type2.GetId();
}
inline void RegisterLine::CopyRegister1(MethodVerifier* verifier, uint32_t vdst, uint32_t vsrc,
TypeCategory cat) {
DCHECK(cat == kTypeCategory1nr || cat == kTypeCategoryRef);
const RegType& type = GetRegisterType(verifier, vsrc);
if (!SetRegisterType<LockOp::kClear>(verifier, vdst, type)) {
return;
}
if (!type.IsConflict() && // Allow conflicts to be copied around.
((cat == kTypeCategory1nr && !type.IsCategory1Types()) ||
(cat == kTypeCategoryRef && !type.IsReferenceTypes()))) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copy1 v" << vdst << "<-v" << vsrc << " type=" << type
<< " cat=" << static_cast<int>(cat);
} else if (cat == kTypeCategoryRef) {
CopyRegToLockDepth(vdst, vsrc);
}
}
inline void RegisterLine::CopyRegister2(MethodVerifier* verifier, uint32_t vdst, uint32_t vsrc) {
const RegType& type_l = GetRegisterType(verifier, vsrc);
const RegType& type_h = GetRegisterType(verifier, vsrc + 1);
if (!type_l.CheckWidePair(type_h)) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copy2 v" << vdst << "<-v" << vsrc
<< " type=" << type_l << "/" << type_h;
} else {
SetRegisterTypeWide(verifier, vdst, type_l, type_h);
}
}
inline bool RegisterLine::VerifyRegisterType(MethodVerifier* verifier, uint32_t vsrc,
const RegType& check_type) {
// Verify the src register type against the check type refining the type of the register
const RegType& src_type = GetRegisterType(verifier, vsrc);
if (UNLIKELY(!check_type.IsAssignableFrom(src_type, verifier))) {
enum VerifyError fail_type;
if (!check_type.IsNonZeroReferenceTypes() || !src_type.IsNonZeroReferenceTypes()) {
// Hard fail if one of the types is primitive, since they are concretely known.
fail_type = VERIFY_ERROR_BAD_CLASS_HARD;
} else if (check_type.IsUninitializedTypes() || src_type.IsUninitializedTypes()) {
// Hard fail for uninitialized types, which don't match anything but themselves.
fail_type = VERIFY_ERROR_BAD_CLASS_HARD;
} else if (check_type.IsUnresolvedTypes() || src_type.IsUnresolvedTypes()) {
fail_type = VERIFY_ERROR_NO_CLASS;
} else {
fail_type = VERIFY_ERROR_BAD_CLASS_SOFT;
}
verifier->Fail(fail_type) << "register v" << vsrc << " has type "
<< src_type << " but expected " << check_type;
return false;
}
if (check_type.IsLowHalf()) {
const RegType& src_type_h = GetRegisterType(verifier, vsrc + 1);
if (UNLIKELY(!src_type.CheckWidePair(src_type_h))) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register v" << vsrc << " has type "
<< src_type << "/" << src_type_h;
return false;
}
}
// The register at vsrc has a defined type, we know the lower-upper-bound, but this is less
// precise than the subtype in vsrc so leave it for reference types. For primitive types
// if they are a defined type then they are as precise as we can get, however, for constant
// types we may wish to refine them. Unfortunately constant propagation has rendered this useless.
return true;
}
inline void RegisterLine::VerifyMonitorStackEmpty(MethodVerifier* verifier) const {
if (MonitorStackDepth() != 0) {
verifier->Fail(VERIFY_ERROR_LOCKING);
if (kDumpLockFailures) {
VLOG(verifier) << "expected empty monitor stack in "
<< verifier->GetMethodReference().PrettyMethod();
}
}
}
inline size_t RegisterLine::ComputeSize(size_t num_regs) {
return OFFSETOF_MEMBER(RegisterLine, line_) + num_regs * sizeof(uint16_t);
}
inline RegisterLine* RegisterLine::Create(size_t num_regs, MethodVerifier* verifier) {
void* memory = verifier->GetArena().Alloc(ComputeSize(num_regs));
return new (memory) RegisterLine(num_regs, verifier);
}
inline RegisterLine::RegisterLine(size_t num_regs, MethodVerifier* verifier)
: num_regs_(num_regs),
monitors_(verifier->GetArena().Adapter(kArenaAllocVerifier)),
reg_to_lock_depths_(std::less<uint32_t>(), verifier->GetArena().Adapter(kArenaAllocVerifier)),
this_initialized_(false) {
std::uninitialized_fill_n(line_, num_regs_, 0u);
SetResultTypeToUnknown(verifier);
}
inline void RegisterLineArenaDelete::operator()(RegisterLine* ptr) const {
if (ptr != nullptr) {
ptr->~RegisterLine();
ProtectMemory(ptr, RegisterLine::ComputeSize(ptr->NumRegs()));
}
}
} // namespace verifier
} // namespace art
#endif // ART_RUNTIME_VERIFIER_REGISTER_LINE_INL_H_