/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_VERIFIER_REGISTER_LINE_INL_H_ #define ART_RUNTIME_VERIFIER_REGISTER_LINE_INL_H_ #include "register_line.h" #include "method_verifier.h" #include "reg_type_cache-inl.h" namespace art { namespace verifier { // Should we dump a warning on failures to verify balanced locking? That would be an indication to // developers that their code will be slow. static constexpr bool kDumpLockFailures = true; inline const RegType& RegisterLine::GetRegisterType(MethodVerifier* verifier, uint32_t vsrc) const { // The register index was validated during the static pass, so we don't need to check it here. DCHECK_LT(vsrc, num_regs_); return verifier->GetRegTypeCache()->GetFromId(line_[vsrc]); } template <LockOp kLockOp> inline bool RegisterLine::SetRegisterType(MethodVerifier* verifier, uint32_t vdst, const RegType& new_type) { DCHECK_LT(vdst, num_regs_); if (new_type.IsLowHalf() || new_type.IsHighHalf()) { verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected category1 register type not '" << new_type << "'"; return false; } else { // Note: previously we failed when asked to set a conflict. However, conflicts are OK as long // as they are not accessed, and our backends can handle this nowadays. line_[vdst] = new_type.GetId(); } switch (kLockOp) { case LockOp::kClear: // Clear the monitor entry bits for this register. ClearAllRegToLockDepths(vdst); break; case LockOp::kKeep: // Should only be doing this with reference types. DCHECK(new_type.IsReferenceTypes()); break; } return true; } inline bool RegisterLine::SetRegisterTypeWide(MethodVerifier* verifier, uint32_t vdst, const RegType& new_type1, const RegType& new_type2) { DCHECK_LT(vdst + 1, num_regs_); if (!new_type1.CheckWidePair(new_type2)) { verifier->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Invalid wide pair '" << new_type1 << "' '" << new_type2 << "'"; return false; } else { line_[vdst] = new_type1.GetId(); line_[vdst + 1] = new_type2.GetId(); } // Clear the monitor entry bits for this register. ClearAllRegToLockDepths(vdst); ClearAllRegToLockDepths(vdst + 1); return true; } inline void RegisterLine::SetResultTypeToUnknown(MethodVerifier* verifier) { result_[0] = verifier->GetRegTypeCache()->Undefined().GetId(); result_[1] = result_[0]; } inline void RegisterLine::SetResultRegisterType(MethodVerifier* verifier, const RegType& new_type) { DCHECK(!new_type.IsLowHalf()); DCHECK(!new_type.IsHighHalf()); result_[0] = new_type.GetId(); result_[1] = verifier->GetRegTypeCache()->Undefined().GetId(); } inline void RegisterLine::SetResultRegisterTypeWide(const RegType& new_type1, const RegType& new_type2) { DCHECK(new_type1.CheckWidePair(new_type2)); result_[0] = new_type1.GetId(); result_[1] = new_type2.GetId(); } inline void RegisterLine::CopyRegister1(MethodVerifier* verifier, uint32_t vdst, uint32_t vsrc, TypeCategory cat) { DCHECK(cat == kTypeCategory1nr || cat == kTypeCategoryRef); const RegType& type = GetRegisterType(verifier, vsrc); if (!SetRegisterType<LockOp::kClear>(verifier, vdst, type)) { return; } if (!type.IsConflict() && // Allow conflicts to be copied around. ((cat == kTypeCategory1nr && !type.IsCategory1Types()) || (cat == kTypeCategoryRef && !type.IsReferenceTypes()))) { verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copy1 v" << vdst << "<-v" << vsrc << " type=" << type << " cat=" << static_cast<int>(cat); } else if (cat == kTypeCategoryRef) { CopyRegToLockDepth(vdst, vsrc); } } inline void RegisterLine::CopyRegister2(MethodVerifier* verifier, uint32_t vdst, uint32_t vsrc) { const RegType& type_l = GetRegisterType(verifier, vsrc); const RegType& type_h = GetRegisterType(verifier, vsrc + 1); if (!type_l.CheckWidePair(type_h)) { verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copy2 v" << vdst << "<-v" << vsrc << " type=" << type_l << "/" << type_h; } else { SetRegisterTypeWide(verifier, vdst, type_l, type_h); } } inline bool RegisterLine::VerifyRegisterType(MethodVerifier* verifier, uint32_t vsrc, const RegType& check_type) { // Verify the src register type against the check type refining the type of the register const RegType& src_type = GetRegisterType(verifier, vsrc); if (UNLIKELY(!check_type.IsAssignableFrom(src_type, verifier))) { enum VerifyError fail_type; if (!check_type.IsNonZeroReferenceTypes() || !src_type.IsNonZeroReferenceTypes()) { // Hard fail if one of the types is primitive, since they are concretely known. fail_type = VERIFY_ERROR_BAD_CLASS_HARD; } else if (check_type.IsUninitializedTypes() || src_type.IsUninitializedTypes()) { // Hard fail for uninitialized types, which don't match anything but themselves. fail_type = VERIFY_ERROR_BAD_CLASS_HARD; } else if (check_type.IsUnresolvedTypes() || src_type.IsUnresolvedTypes()) { fail_type = VERIFY_ERROR_NO_CLASS; } else { fail_type = VERIFY_ERROR_BAD_CLASS_SOFT; } verifier->Fail(fail_type) << "register v" << vsrc << " has type " << src_type << " but expected " << check_type; return false; } if (check_type.IsLowHalf()) { const RegType& src_type_h = GetRegisterType(verifier, vsrc + 1); if (UNLIKELY(!src_type.CheckWidePair(src_type_h))) { verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register v" << vsrc << " has type " << src_type << "/" << src_type_h; return false; } } // The register at vsrc has a defined type, we know the lower-upper-bound, but this is less // precise than the subtype in vsrc so leave it for reference types. For primitive types // if they are a defined type then they are as precise as we can get, however, for constant // types we may wish to refine them. Unfortunately constant propagation has rendered this useless. return true; } inline void RegisterLine::VerifyMonitorStackEmpty(MethodVerifier* verifier) const { if (MonitorStackDepth() != 0) { verifier->Fail(VERIFY_ERROR_LOCKING); if (kDumpLockFailures) { VLOG(verifier) << "expected empty monitor stack in " << verifier->GetMethodReference().PrettyMethod(); } } } inline size_t RegisterLine::ComputeSize(size_t num_regs) { return OFFSETOF_MEMBER(RegisterLine, line_) + num_regs * sizeof(uint16_t); } inline RegisterLine* RegisterLine::Create(size_t num_regs, MethodVerifier* verifier) { void* memory = verifier->GetArena().Alloc(ComputeSize(num_regs)); return new (memory) RegisterLine(num_regs, verifier); } inline RegisterLine::RegisterLine(size_t num_regs, MethodVerifier* verifier) : num_regs_(num_regs), monitors_(verifier->GetArena().Adapter(kArenaAllocVerifier)), reg_to_lock_depths_(std::less<uint32_t>(), verifier->GetArena().Adapter(kArenaAllocVerifier)), this_initialized_(false) { std::uninitialized_fill_n(line_, num_regs_, 0u); SetResultTypeToUnknown(verifier); } inline void RegisterLineArenaDelete::operator()(RegisterLine* ptr) const { if (ptr != nullptr) { ptr->~RegisterLine(); ProtectMemory(ptr, RegisterLine::ComputeSize(ptr->NumRegs())); } } } // namespace verifier } // namespace art #endif // ART_RUNTIME_VERIFIER_REGISTER_LINE_INL_H_