/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "art_method-inl.h"
#include "base/enums.h"
#include "callee_save_frame.h"
#include "common_throws.h"
#include "dex_file-inl.h"
#include "dex_instruction-inl.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "gc/accounting/card_table-inl.h"
#include "imt_conflict_table.h"
#include "imtable-inl.h"
#include "interpreter/interpreter.h"
#include "linear_alloc.h"
#include "method_handles.h"
#include "method_reference.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/method.h"
#include "mirror/method_handle_impl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "oat_quick_method_header.h"
#include "quick_exception_handler.h"
#include "runtime.h"
#include "scoped_thread_state_change-inl.h"
#include "stack.h"
#include "debugger.h"
#include "well_known_classes.h"
namespace art {
// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
class QuickArgumentVisitor {
// Number of bytes for each out register in the caller method's frame.
static constexpr size_t kBytesStackArgLocation = 4;
// Frame size in bytes of a callee-save frame for RefsAndArgs.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
#if defined(__arm__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | LR |
// | ... | 4x6 bytes callee saves
// | R3 |
// | R2 |
// | R1 |
// | S15 |
// | : |
// | S0 |
// | | 4x2 bytes padding
// | Method* | <- sp
static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
static constexpr bool kQuickSkipOddFpRegisters = false;
static constexpr size_t kNumQuickGprArgs = 3;
static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
static constexpr bool kGprFprLockstep = false;
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
arm::ArmCalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
arm::ArmCalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
arm::ArmCalleeSaveLrOffset(Runtime::kSaveRefsAndArgs); // Offset of return address.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__aarch64__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | LR |
// | X29 |
// | : |
// | X20 |
// | X7 |
// | : |
// | X1 |
// | D7 |
// | : |
// | D0 |
// | | padding
// | Method* | <- sp
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
static constexpr bool kAlignPairRegister = false;
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
static constexpr bool kQuickSkipOddFpRegisters = false;
static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr bool kGprFprLockstep = false;
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
arm64::Arm64CalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
arm64::Arm64CalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
arm64::Arm64CalleeSaveLrOffset(Runtime::kSaveRefsAndArgs); // Offset of return address.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__mips__) && !defined(__LP64__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | RA |
// | ... | callee saves
// | T1 | arg5
// | T0 | arg4
// | A3 | arg3
// | A2 | arg2
// | A1 | arg1
// | F19 |
// | F18 | f_arg5
// | F17 |
// | F16 | f_arg4
// | F15 |
// | F14 | f_arg3
// | F13 |
// | F12 | f_arg2
// | F11 |
// | F10 | f_arg1
// | F9 |
// | F8 | f_arg0
// | | padding
// | A0/Method* | <- sp
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
static constexpr bool kAlignPairRegister = true;
static constexpr bool kQuickSoftFloatAbi = false;
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
static constexpr bool kQuickSkipOddFpRegisters = true;
static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 12; // 6 arguments passed in FPRs. Floats can be
// passed only in even numbered registers and each
// double occupies two registers.
static constexpr bool kGprFprLockstep = false;
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108; // Offset of return address.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__mips__) && defined(__LP64__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | RA |
// | ... | callee saves
// | A7 | arg7
// | A6 | arg6
// | A5 | arg5
// | A4 | arg4
// | A3 | arg3
// | A2 | arg2
// | A1 | arg1
// | F19 | f_arg7
// | F18 | f_arg6
// | F17 | f_arg5
// | F16 | f_arg4
// | F15 | f_arg3
// | F14 | f_arg2
// | F13 | f_arg1
// | F12 | f_arg0
// | | padding
// | A0/Method* | <- sp
// NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
static constexpr bool kAlignPairRegister = false;
static constexpr bool kQuickSoftFloatAbi = false;
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
static constexpr bool kQuickSkipOddFpRegisters = false;
static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 7; // 7 arguments passed in FPRs.
static constexpr bool kGprFprLockstep = true;
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24; // Offset of first FPR arg (F13).
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg (A1).
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200; // Offset of return address.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__i386__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | Return |
// | EBP,ESI,EDI | callee saves
// | EBX | arg3
// | EDX | arg2
// | ECX | arg1
// | XMM3 | float arg 4
// | XMM2 | float arg 3
// | XMM1 | float arg 2
// | XMM0 | float arg 1
// | EAX/Method* | <- sp
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
static constexpr bool kAlignPairRegister = false;
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
static constexpr bool kQuickSkipOddFpRegisters = false;
static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs.
static constexpr bool kGprFprLockstep = false;
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8; // Offset of return address.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__x86_64__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | reg. arg spills | | Caller's frame
// | Method* | ---
// | Return |
// | R15 | callee save
// | R14 | callee save
// | R13 | callee save
// | R12 | callee save
// | R9 | arg5
// | R8 | arg4
// | RSI/R6 | arg1
// | RBP/R5 | callee save
// | RBX/R3 | callee save
// | RDX/R2 | arg2
// | RCX/R1 | arg3
// | XMM7 | float arg 8
// | XMM6 | float arg 7
// | XMM5 | float arg 6
// | XMM4 | float arg 5
// | XMM3 | float arg 4
// | XMM2 | float arg 3
// | XMM1 | float arg 2
// | XMM0 | float arg 1
// | Padding |
// | RDI/Method* | <- sp
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
static constexpr bool kAlignPairRegister = false;
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
static constexpr bool kQuickSkipOddFpRegisters = false;
static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr bool kGprFprLockstep = false;
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
switch (gpr_index) {
case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
default:
LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
return 0;
}
}
#else
#error "Unsupported architecture"
#endif
public:
// Special handling for proxy methods. Proxy methods are instance methods so the
// 'this' object is the 1st argument. They also have the same frame layout as the
// kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
// 1st GPR.
static mirror::Object* GetProxyThisObject(ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK((*sp)->IsProxyMethod());
CHECK_GT(kNumQuickGprArgs, 0u);
constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR.
size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
GprIndexToGprOffset(kThisGprIndex);
uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
}
static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK((*sp)->IsCalleeSaveMethod());
return GetCalleeSaveMethodCaller(sp, Runtime::kSaveRefsAndArgs);
}
static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK((*sp)->IsCalleeSaveMethod());
uint8_t* previous_sp =
reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
return *reinterpret_cast<ArtMethod**>(previous_sp);
}
static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK((*sp)->IsCalleeSaveMethod());
const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
if (current_code->IsOptimized()) {
CodeInfo code_info = current_code->GetOptimizedCodeInfo();
CodeInfoEncoding encoding = code_info.ExtractEncoding();
StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
DCHECK(stack_map.IsValid());
if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
inline_info.GetDepth(encoding.inline_info.encoding)-1);
} else {
return stack_map.GetDexPc(encoding.stack_map.encoding);
}
} else {
return current_code->ToDexPc(*caller_sp, outer_pc);
}
}
static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK((*sp)->IsCalleeSaveMethod());
const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
if (!current_code->IsOptimized()) {
return false;
}
uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
CodeInfo code_info = current_code->GetOptimizedCodeInfo();
CodeInfoEncoding encoding = code_info.ExtractEncoding();
MethodInfo method_info = current_code->GetOptimizedMethodInfo();
InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
if (invoke.IsValid()) {
*invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
*dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
return true;
}
return false;
}
// For the given quick ref and args quick frame, return the caller's PC.
static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK((*sp)->IsCalleeSaveMethod());
uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
return *reinterpret_cast<uintptr_t*>(lr);
}
QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
+ sizeof(ArtMethod*)), // Skip ArtMethod*.
gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
"Number of Quick FPR arguments unexpected");
static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
"Double alignment unexpected");
// For register alignment, we want to assume that counters(fpr_double_index_) are even if the
// next register is even.
static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
"Number of Quick FPR arguments not even");
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
}
virtual ~QuickArgumentVisitor() {}
virtual void Visit() = 0;
Primitive::Type GetParamPrimitiveType() const {
return cur_type_;
}
uint8_t* GetParamAddress() const {
if (!kQuickSoftFloatAbi) {
Primitive::Type type = GetParamPrimitiveType();
if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
}
} else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
}
return stack_args_ + (stack_index_ * kBytesStackArgLocation);
}
}
if (gpr_index_ < kNumQuickGprArgs) {
return gpr_args_ + GprIndexToGprOffset(gpr_index_);
}
return stack_args_ + (stack_index_ * kBytesStackArgLocation);
}
bool IsSplitLongOrDouble() const {
if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
(GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
return is_split_long_or_double_;
} else {
return false; // An optimization for when GPR and FPRs are 64bit.
}
}
bool IsParamAReference() const {
return GetParamPrimitiveType() == Primitive::kPrimNot;
}
bool IsParamALongOrDouble() const {
Primitive::Type type = GetParamPrimitiveType();
return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
}
uint64_t ReadSplitLongParam() const {
// The splitted long is always available through the stack.
return *reinterpret_cast<uint64_t*>(stack_args_
+ stack_index_ * kBytesStackArgLocation);
}
void IncGprIndex() {
gpr_index_++;
if (kGprFprLockstep) {
fpr_index_++;
}
}
void IncFprIndex() {
fpr_index_++;
if (kGprFprLockstep) {
gpr_index_++;
}
}
void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
// (a) 'stack_args_' should point to the first method's argument
// (b) whatever the argument type it is, the 'stack_index_' should
// be moved forward along with every visiting.
gpr_index_ = 0;
fpr_index_ = 0;
if (kQuickDoubleRegAlignedFloatBackFilled) {
fpr_double_index_ = 0;
}
stack_index_ = 0;
if (!is_static_) { // Handle this.
cur_type_ = Primitive::kPrimNot;
is_split_long_or_double_ = false;
Visit();
stack_index_++;
if (kNumQuickGprArgs > 0) {
IncGprIndex();
}
}
for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
cur_type_ = Primitive::GetType(shorty_[shorty_index]);
switch (cur_type_) {
case Primitive::kPrimNot:
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
is_split_long_or_double_ = false;
Visit();
stack_index_++;
if (gpr_index_ < kNumQuickGprArgs) {
IncGprIndex();
}
break;
case Primitive::kPrimFloat:
is_split_long_or_double_ = false;
Visit();
stack_index_++;
if (kQuickSoftFloatAbi) {
if (gpr_index_ < kNumQuickGprArgs) {
IncGprIndex();
}
} else {
if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
IncFprIndex();
if (kQuickDoubleRegAlignedFloatBackFilled) {
// Double should not overlap with float.
// For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
// Float should not overlap with double.
if (fpr_index_ % 2 == 0) {
fpr_index_ = std::max(fpr_double_index_, fpr_index_);
}
} else if (kQuickSkipOddFpRegisters) {
IncFprIndex();
}
}
}
break;
case Primitive::kPrimDouble:
case Primitive::kPrimLong:
if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
if (cur_type_ == Primitive::kPrimLong &&
#if defined(__mips__) && !defined(__LP64__)
(gpr_index_ == 0 || gpr_index_ == 2) &&
#else
gpr_index_ == 0 &&
#endif
kAlignPairRegister) {
// Currently, this is only for ARM and MIPS, where we align long parameters with
// even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
// R2 (on ARM) or A2(T0) (on MIPS) instead.
IncGprIndex();
}
is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
((gpr_index_ + 1) == kNumQuickGprArgs);
if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
// We don't want to split this. Pass over this register.
gpr_index_++;
is_split_long_or_double_ = false;
}
Visit();
if (kBytesStackArgLocation == 4) {
stack_index_+= 2;
} else {
CHECK_EQ(kBytesStackArgLocation, 8U);
stack_index_++;
}
if (gpr_index_ < kNumQuickGprArgs) {
IncGprIndex();
if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
if (gpr_index_ < kNumQuickGprArgs) {
IncGprIndex();
}
}
}
} else {
is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
Visit();
if (kBytesStackArgLocation == 4) {
stack_index_+= 2;
} else {
CHECK_EQ(kBytesStackArgLocation, 8U);
stack_index_++;
}
if (kQuickDoubleRegAlignedFloatBackFilled) {
if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
fpr_double_index_ += 2;
// Float should not overlap with double.
if (fpr_index_ % 2 == 0) {
fpr_index_ = std::max(fpr_double_index_, fpr_index_);
}
}
} else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
IncFprIndex();
if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
IncFprIndex();
}
}
}
}
break;
default:
LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
}
}
}
protected:
const bool is_static_;
const char* const shorty_;
const uint32_t shorty_len_;
private:
uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame.
uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame.
uint8_t* const stack_args_; // Address of stack arguments in caller's frame.
uint32_t gpr_index_; // Index into spilled GPRs.
// Index into spilled FPRs.
// In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
// holds a higher register number.
uint32_t fpr_index_;
// Index into spilled FPRs for aligned double.
// Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
// terms of singles, may be behind fpr_index.
uint32_t fpr_double_index_;
uint32_t stack_index_; // Index into arguments on the stack.
// The current type of argument during VisitArguments.
Primitive::Type cur_type_;
// Does a 64bit parameter straddle the register and stack arguments?
bool is_split_long_or_double_;
};
// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
return QuickArgumentVisitor::GetProxyThisObject(sp);
}
// Visits arguments on the stack placing them into the shadow frame.
class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
public:
BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
private:
ShadowFrame* const sf_;
uint32_t cur_reg_;
DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
};
void BuildQuickShadowFrameVisitor::Visit() {
Primitive::Type type = GetParamPrimitiveType();
switch (type) {
case Primitive::kPrimLong: // Fall-through.
case Primitive::kPrimDouble:
if (IsSplitLongOrDouble()) {
sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
} else {
sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
}
++cur_reg_;
break;
case Primitive::kPrimNot: {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
}
break;
case Primitive::kPrimBoolean: // Fall-through.
case Primitive::kPrimByte: // Fall-through.
case Primitive::kPrimChar: // Fall-through.
case Primitive::kPrimShort: // Fall-through.
case Primitive::kPrimInt: // Fall-through.
case Primitive::kPrimFloat:
sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
++cur_reg_;
}
extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Ensure we don't get thread suspension until the object arguments are safely in the shadow
// frame.
ScopedQuickEntrypointChecks sqec(self);
if (UNLIKELY(!method->IsInvokable())) {
method->ThrowInvocationTimeError();
return 0;
}
JValue tmp_value;
ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
StackedShadowFrameType::kDeoptimizationShadowFrame, false);
ManagedStack fragment;
DCHECK(!method->IsNative()) << method->PrettyMethod();
uint32_t shorty_len = 0;
ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
DCHECK(code_item != nullptr) << method->PrettyMethod();
const char* shorty = non_proxy_method->GetShorty(&shorty_len);
JValue result;
if (deopt_frame != nullptr) {
// Coming from partial-fragment deopt.
if (kIsDebugBuild) {
// Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
// of the call-stack) corresponds to the called method.
ShadowFrame* linked = deopt_frame;
while (linked->GetLink() != nullptr) {
linked = linked->GetLink();
}
CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
<< ArtMethod::PrettyMethod(linked->GetMethod());
}
if (VLOG_IS_ON(deopt)) {
// Print out the stack to verify that it was a partial-fragment deopt.
LOG(INFO) << "Continue-ing from deopt. Stack is:";
QuickExceptionHandler::DumpFramesWithType(self, true);
}
ObjPtr<mirror::Throwable> pending_exception;
bool from_code = false;
self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
// Push a transition back into managed code onto the linked list in thread.
self->PushManagedStackFragment(&fragment);
// Ensure that the stack is still in order.
if (kIsDebugBuild) {
class DummyStackVisitor : public StackVisitor {
public:
explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
: StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
// Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
// logic. Just always say we want to continue.
return true;
}
};
DummyStackVisitor dsv(self);
dsv.WalkStack();
}
// Restore the exception that was pending before deoptimization then interpret the
// deoptimized frames.
if (pending_exception != nullptr) {
self->SetException(pending_exception);
}
interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
} else {
const char* old_cause = self->StartAssertNoThreadSuspension(
"Building interpreter shadow frame");
uint16_t num_regs = code_item->registers_size_;
// No last shadow coming from quick.
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
shadow_frame, first_arg_reg);
shadow_frame_builder.VisitArguments();
const bool needs_initialization =
method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
// Push a transition back into managed code onto the linked list in thread.
self->PushManagedStackFragment(&fragment);
self->PushShadowFrame(shadow_frame);
self->EndAssertNoThreadSuspension(old_cause);
if (needs_initialization) {
// Ensure static method's class is initialized.
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
DCHECK(Thread::Current()->IsExceptionPending())
<< shadow_frame->GetMethod()->PrettyMethod();
self->PopManagedStackFragment(fragment);
return 0;
}
}
result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
}
// Pop transition.
self->PopManagedStackFragment(fragment);
// Request a stack deoptimization if needed
ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
// If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
// should be done and it knows the real return pc.
if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
<< caller->PrettyMethod();
} else {
// Push the context of the deoptimization stack so we can restore the return value and the
// exception before executing the deoptimized frames.
self->PushDeoptimizationContext(
result, shorty[0] == 'L', /* from_code */ false, self->GetException());
// Set special exception to cause deoptimization.
self->SetException(Thread::GetDeoptimizationException());
}
}
// No need to restore the args since the method has already been run by the interpreter.
return result.GetJ();
}
// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
// to jobjects.
class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
public:
BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
private:
ScopedObjectAccessUnchecked* const soa_;
std::vector<jvalue>* const args_;
// References which we must update when exiting in case the GC moved the objects.
std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
};
void BuildQuickArgumentVisitor::Visit() {
jvalue val;
Primitive::Type type = GetParamPrimitiveType();
switch (type) {
case Primitive::kPrimNot: {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
references_.push_back(std::make_pair(val.l, stack_ref));
break;
}
case Primitive::kPrimLong: // Fall-through.
case Primitive::kPrimDouble:
if (IsSplitLongOrDouble()) {
val.j = ReadSplitLongParam();
} else {
val.j = *reinterpret_cast<jlong*>(GetParamAddress());
}
break;
case Primitive::kPrimBoolean: // Fall-through.
case Primitive::kPrimByte: // Fall-through.
case Primitive::kPrimChar: // Fall-through.
case Primitive::kPrimShort: // Fall-through.
case Primitive::kPrimInt: // Fall-through.
case Primitive::kPrimFloat:
val.i = *reinterpret_cast<jint*>(GetParamAddress());
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
args_->push_back(val);
}
void BuildQuickArgumentVisitor::FixupReferences() {
// Fixup any references which may have changed.
for (const auto& pair : references_) {
pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
soa_->Env()->DeleteLocalRef(pair.first);
}
}
// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
// which is responsible for recording callee save registers. We explicitly place into jobjects the
// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
// field within the proxy object, which will box the primitive arguments and deal with error cases.
extern "C" uint64_t artQuickProxyInvokeHandler(
ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
// Ensure we don't get thread suspension until the object arguments are safely in jobjects.
const char* old_cause =
self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
// Register the top of the managed stack, making stack crawlable.
DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
self->VerifyStack();
// Start new JNI local reference state.
JNIEnvExt* env = self->GetJniEnv();
ScopedObjectAccessUnchecked soa(env);
ScopedJniEnvLocalRefState env_state(env);
// Create local ref. copies of proxy method and the receiver.
jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
// Placing arguments into args vector and remove the receiver.
ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
<< non_proxy_method->PrettyMethod();
std::vector<jvalue> args;
uint32_t shorty_len = 0;
const char* shorty = non_proxy_method->GetShorty(&shorty_len);
BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
local_ref_visitor.VisitArguments();
DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
args.erase(args.begin());
// Convert proxy method into expected interface method.
ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
self->EndAssertNoThreadSuspension(old_cause);
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
DCHECK(!Runtime::Current()->IsActiveTransaction());
jobject interface_method_jobj = soa.AddLocalReference<jobject>(
mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(),
interface_method));
// All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
// that performs allocations.
JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
// Restore references which might have moved.
local_ref_visitor.FixupReferences();
return result.GetJ();
}
// Read object references held in arguments from quick frames and place in a JNI local references,
// so they don't get garbage collected.
class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
public:
RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
private:
ScopedObjectAccessUnchecked* const soa_;
// References which we must update when exiting in case the GC moved the objects.
std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
};
void RememberForGcArgumentVisitor::Visit() {
if (IsParamAReference()) {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
jobject reference =
soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
references_.push_back(std::make_pair(reference, stack_ref));
}
}
void RememberForGcArgumentVisitor::FixupReferences() {
// Fixup any references which may have changed.
for (const auto& pair : references_) {
pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
soa_->Env()->DeleteLocalRef(pair.first);
}
}
// Lazily resolve a method for quick. Called by stub code.
extern "C" const void* artQuickResolutionTrampoline(
ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
// The resolution trampoline stashes the resolved method into the callee-save frame to transport
// it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
// does not have the same stack layout as the callee-save method).
ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
// Start new JNI local reference state
JNIEnvExt* env = self->GetJniEnv();
ScopedObjectAccessUnchecked soa(env);
ScopedJniEnvLocalRefState env_state(env);
const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
// Compute details about the called method (avoid GCs)
ClassLinker* linker = Runtime::Current()->GetClassLinker();
InvokeType invoke_type;
MethodReference called_method(nullptr, 0);
const bool called_method_known_on_entry = !called->IsRuntimeMethod();
ArtMethod* caller = nullptr;
if (!called_method_known_on_entry) {
caller = QuickArgumentVisitor::GetCallingMethod(sp);
called_method.dex_file = caller->GetDexFile();
InvokeType stack_map_invoke_type;
uint32_t stack_map_dex_method_idx;
const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
&stack_map_invoke_type,
&stack_map_dex_method_idx);
// For debug builds, we make sure both of the paths are consistent by also looking at the dex
// code.
if (!found_stack_map || kIsDebugBuild) {
uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
const DexFile::CodeItem* code;
code = caller->GetCodeItem();
CHECK_LT(dex_pc, code->insns_size_in_code_units_);
const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
Instruction::Code instr_code = instr->Opcode();
bool is_range;
switch (instr_code) {
case Instruction::INVOKE_DIRECT:
invoke_type = kDirect;
is_range = false;
break;
case Instruction::INVOKE_DIRECT_RANGE:
invoke_type = kDirect;
is_range = true;
break;
case Instruction::INVOKE_STATIC:
invoke_type = kStatic;
is_range = false;
break;
case Instruction::INVOKE_STATIC_RANGE:
invoke_type = kStatic;
is_range = true;
break;
case Instruction::INVOKE_SUPER:
invoke_type = kSuper;
is_range = false;
break;
case Instruction::INVOKE_SUPER_RANGE:
invoke_type = kSuper;
is_range = true;
break;
case Instruction::INVOKE_VIRTUAL:
invoke_type = kVirtual;
is_range = false;
break;
case Instruction::INVOKE_VIRTUAL_RANGE:
invoke_type = kVirtual;
is_range = true;
break;
case Instruction::INVOKE_INTERFACE:
invoke_type = kInterface;
is_range = false;
break;
case Instruction::INVOKE_INTERFACE_RANGE:
invoke_type = kInterface;
is_range = true;
break;
default:
LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
UNREACHABLE();
}
called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
// Check that the invoke matches what we expected, note that this path only happens for debug
// builds.
if (found_stack_map) {
DCHECK_EQ(stack_map_invoke_type, invoke_type);
if (invoke_type != kSuper) {
// Super may be sharpened.
DCHECK_EQ(stack_map_dex_method_idx, called_method.dex_method_index)
<< called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
<< called_method.dex_file->PrettyMethod(called_method.dex_method_index);
}
} else {
VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
<< called_method.dex_method_index;
}
} else {
invoke_type = stack_map_invoke_type;
called_method.dex_method_index = stack_map_dex_method_idx;
}
} else {
invoke_type = kStatic;
called_method.dex_file = called->GetDexFile();
called_method.dex_method_index = called->GetDexMethodIndex();
}
uint32_t shorty_len;
const char* shorty =
called_method.dex_file->GetMethodShorty(
called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
visitor.VisitArguments();
self->EndAssertNoThreadSuspension(old_cause);
const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
// Resolve method filling in dex cache.
if (!called_method_known_on_entry) {
StackHandleScope<1> hs(self);
mirror::Object* dummy = nullptr;
HandleWrapper<mirror::Object> h_receiver(
hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
self, called_method.dex_method_index, caller, invoke_type);
}
const void* code = nullptr;
if (LIKELY(!self->IsExceptionPending())) {
// Incompatible class change should have been handled in resolve method.
CHECK(!called->CheckIncompatibleClassChange(invoke_type))
<< called->PrettyMethod() << " " << invoke_type;
if (virtual_or_interface || invoke_type == kSuper) {
// Refine called method based on receiver for kVirtual/kInterface, and
// caller for kSuper.
ArtMethod* orig_called = called;
if (invoke_type == kVirtual) {
CHECK(receiver != nullptr) << invoke_type;
called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
} else if (invoke_type == kInterface) {
CHECK(receiver != nullptr) << invoke_type;
called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
} else {
DCHECK_EQ(invoke_type, kSuper);
CHECK(caller != nullptr) << invoke_type;
StackHandleScope<2> hs(self);
Handle<mirror::DexCache> dex_cache(
hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
// TODO Maybe put this into a mirror::Class function.
mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
called_method.dex_method_index, dex_cache, class_loader);
if (ref_class->IsInterface()) {
called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
} else {
called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
called->GetMethodIndex(), kRuntimePointerSize);
}
}
CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
<< mirror::Object::PrettyTypeOf(receiver) << " "
<< invoke_type << " " << orig_called->GetVtableIndex();
// We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
// of the sharpened method avoiding dirtying the dex cache if possible.
// Note, called_method.dex_method_index references the dex method before the
// FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
// about the name and signature.
uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
if (!called->HasSameDexCacheResolvedMethods(caller, kRuntimePointerSize)) {
// Calling from one dex file to another, need to compute the method index appropriate to
// the caller's dex file. Since we get here only if the original called was a runtime
// method, we've got the correct dex_file and a dex_method_idx from above.
DCHECK(!called_method_known_on_entry);
DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
const DexFile* caller_dex_file = called_method.dex_file;
uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
update_dex_cache_method_index =
called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
caller_method_name_and_sig_index);
}
if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
(caller->GetDexCacheResolvedMethod(
update_dex_cache_method_index, kRuntimePointerSize) != called)) {
caller->SetDexCacheResolvedMethod(update_dex_cache_method_index,
called,
kRuntimePointerSize);
}
} else if (invoke_type == kStatic) {
const auto called_dex_method_idx = called->GetDexMethodIndex();
// For static invokes, we may dispatch to the static method in the superclass but resolve
// using the subclass. To prevent getting slow paths on each invoke, we force set the
// resolved method for the super class dex method index if we are in the same dex file.
// b/19175856
if (called->GetDexFile() == called_method.dex_file &&
called_method.dex_method_index != called_dex_method_idx) {
called->GetDexCache()->SetResolvedMethod(called_dex_method_idx,
called,
kRuntimePointerSize);
}
}
// Ensure that the called method's class is initialized.
StackHandleScope<1> hs(soa.Self());
Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
linker->EnsureInitialized(soa.Self(), called_class, true, true);
if (LIKELY(called_class->IsInitialized())) {
if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
// If we are single-stepping or the called method is deoptimized (by a
// breakpoint, for example), then we have to execute the called method
// with the interpreter.
code = GetQuickToInterpreterBridge();
} else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
// If the caller is deoptimized (by a breakpoint, for example), we have to
// continue its execution with interpreter when returning from the called
// method. Because we do not want to execute the called method with the
// interpreter, we wrap its execution into the instrumentation stubs.
// When the called method returns, it will execute the instrumentation
// exit hook that will determine the need of the interpreter with a call
// to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
// it is needed.
code = GetQuickInstrumentationEntryPoint();
} else {
code = called->GetEntryPointFromQuickCompiledCode();
}
} else if (called_class->IsInitializing()) {
if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
// If we are single-stepping or the called method is deoptimized (by a
// breakpoint, for example), then we have to execute the called method
// with the interpreter.
code = GetQuickToInterpreterBridge();
} else if (invoke_type == kStatic) {
// Class is still initializing, go to oat and grab code (trampoline must be left in place
// until class is initialized to stop races between threads).
code = linker->GetQuickOatCodeFor(called);
} else {
// No trampoline for non-static methods.
code = called->GetEntryPointFromQuickCompiledCode();
}
} else {
DCHECK(called_class->IsErroneous());
}
}
CHECK_EQ(code == nullptr, self->IsExceptionPending());
// Fixup any locally saved objects may have moved during a GC.
visitor.FixupReferences();
// Place called method in callee-save frame to be placed as first argument to quick method.
*sp = called;
return code;
}
/*
* This class uses a couple of observations to unite the different calling conventions through
* a few constants.
*
* 1) Number of registers used for passing is normally even, so counting down has no penalty for
* possible alignment.
* 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
* types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
* when we have to split things
* 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
* and we can use Int handling directly.
* 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
* necessary when widening. Also, widening of Ints will take place implicitly, and the
* extension should be compatible with Aarch64, which mandates copying the available bits
* into LSB and leaving the rest unspecified.
* 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
* the stack.
* 6) There is only little endian.
*
*
* Actual work is supposed to be done in a delegate of the template type. The interface is as
* follows:
*
* void PushGpr(uintptr_t): Add a value for the next GPR
*
* void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need
* padding, that is, think the architecture is 32b and aligns 64b.
*
* void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to
* split this if necessary. The current state will have aligned, if
* necessary.
*
* void PushStack(uintptr_t): Push a value to the stack.
*
* uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
* as this might be important for null initialization.
* Must return the jobject, that is, the reference to the
* entry in the HandleScope (nullptr if necessary).
*
*/
template<class T> class BuildNativeCallFrameStateMachine {
public:
#if defined(__arm__)
// TODO: These are all dummy values!
static constexpr bool kNativeSoftFloatAbi = true;
static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3
static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 2;
static constexpr size_t kRegistersNeededForDouble = 2;
static constexpr bool kMultiRegistersAligned = true;
static constexpr bool kMultiFPRegistersWidened = false;
static constexpr bool kMultiGPRegistersWidened = false;
static constexpr bool kAlignLongOnStack = true;
static constexpr bool kAlignDoubleOnStack = true;
#elif defined(__aarch64__)
static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 1;
static constexpr size_t kRegistersNeededForDouble = 1;
static constexpr bool kMultiRegistersAligned = false;
static constexpr bool kMultiFPRegistersWidened = false;
static constexpr bool kMultiGPRegistersWidened = false;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#elif defined(__mips__) && !defined(__LP64__)
static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI.
static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 2;
static constexpr size_t kRegistersNeededForDouble = 2;
static constexpr bool kMultiRegistersAligned = true;
static constexpr bool kMultiFPRegistersWidened = true;
static constexpr bool kMultiGPRegistersWidened = false;
static constexpr bool kAlignLongOnStack = true;
static constexpr bool kAlignDoubleOnStack = true;
#elif defined(__mips__) && defined(__LP64__)
// Let the code prepare GPRs only and we will load the FPRs with same data.
static constexpr bool kNativeSoftFloatAbi = true;
static constexpr size_t kNumNativeGprArgs = 8;
static constexpr size_t kNumNativeFprArgs = 0;
static constexpr size_t kRegistersNeededForLong = 1;
static constexpr size_t kRegistersNeededForDouble = 1;
static constexpr bool kMultiRegistersAligned = false;
static constexpr bool kMultiFPRegistersWidened = false;
static constexpr bool kMultiGPRegistersWidened = true;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#elif defined(__i386__)
// TODO: Check these!
static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp
static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 2;
static constexpr size_t kRegistersNeededForDouble = 2;
static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways
static constexpr bool kMultiFPRegistersWidened = false;
static constexpr bool kMultiGPRegistersWidened = false;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#elif defined(__x86_64__)
static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 1;
static constexpr size_t kRegistersNeededForDouble = 1;
static constexpr bool kMultiRegistersAligned = false;
static constexpr bool kMultiFPRegistersWidened = false;
static constexpr bool kMultiGPRegistersWidened = false;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#else
#error "Unsupported architecture"
#endif
public:
explicit BuildNativeCallFrameStateMachine(T* delegate)
: gpr_index_(kNumNativeGprArgs),
fpr_index_(kNumNativeFprArgs),
stack_entries_(0),
delegate_(delegate) {
// For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
// the next register is even; counting down is just to make the compiler happy...
static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
}
virtual ~BuildNativeCallFrameStateMachine() {}
bool HavePointerGpr() const {
return gpr_index_ > 0;
}
void AdvancePointer(const void* val) {
if (HavePointerGpr()) {
gpr_index_--;
PushGpr(reinterpret_cast<uintptr_t>(val));
} else {
stack_entries_++; // TODO: have a field for pointer length as multiple of 32b
PushStack(reinterpret_cast<uintptr_t>(val));
gpr_index_ = 0;
}
}
bool HaveHandleScopeGpr() const {
return gpr_index_ > 0;
}
void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
uintptr_t handle = PushHandle(ptr);
if (HaveHandleScopeGpr()) {
gpr_index_--;
PushGpr(handle);
} else {
stack_entries_++;
PushStack(handle);
gpr_index_ = 0;
}
}
bool HaveIntGpr() const {
return gpr_index_ > 0;
}
void AdvanceInt(uint32_t val) {
if (HaveIntGpr()) {
gpr_index_--;
if (kMultiGPRegistersWidened) {
DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
} else {
PushGpr(val);
}
} else {
stack_entries_++;
if (kMultiGPRegistersWidened) {
DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
} else {
PushStack(val);
}
gpr_index_ = 0;
}
}
bool HaveLongGpr() const {
return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
}
bool LongGprNeedsPadding() const {
return kRegistersNeededForLong > 1 && // only pad when using multiple registers
kAlignLongOnStack && // and when it needs alignment
(gpr_index_ & 1) == 1; // counter is odd, see constructor
}
bool LongStackNeedsPadding() const {
return kRegistersNeededForLong > 1 && // only pad when using multiple registers
kAlignLongOnStack && // and when it needs 8B alignment
(stack_entries_ & 1) == 1; // counter is odd
}
void AdvanceLong(uint64_t val) {
if (HaveLongGpr()) {
if (LongGprNeedsPadding()) {
PushGpr(0);
gpr_index_--;
}
if (kRegistersNeededForLong == 1) {
PushGpr(static_cast<uintptr_t>(val));
} else {
PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
}
gpr_index_ -= kRegistersNeededForLong;
} else {
if (LongStackNeedsPadding()) {
PushStack(0);
stack_entries_++;
}
if (kRegistersNeededForLong == 1) {
PushStack(static_cast<uintptr_t>(val));
stack_entries_++;
} else {
PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
stack_entries_ += 2;
}
gpr_index_ = 0;
}
}
bool HaveFloatFpr() const {
return fpr_index_ > 0;
}
void AdvanceFloat(float val) {
if (kNativeSoftFloatAbi) {
AdvanceInt(bit_cast<uint32_t, float>(val));
} else {
if (HaveFloatFpr()) {
fpr_index_--;
if (kRegistersNeededForDouble == 1) {
if (kMultiFPRegistersWidened) {
PushFpr8(bit_cast<uint64_t, double>(val));
} else {
// No widening, just use the bits.
PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
}
} else {
PushFpr4(val);
}
} else {
stack_entries_++;
if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
// Need to widen before storing: Note the "double" in the template instantiation.
// Note: We need to jump through those hoops to make the compiler happy.
DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
} else {
PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
}
fpr_index_ = 0;
}
}
}
bool HaveDoubleFpr() const {
return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
}
bool DoubleFprNeedsPadding() const {
return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
kAlignDoubleOnStack && // and when it needs alignment
(fpr_index_ & 1) == 1; // counter is odd, see constructor
}
bool DoubleStackNeedsPadding() const {
return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
kAlignDoubleOnStack && // and when it needs 8B alignment
(stack_entries_ & 1) == 1; // counter is odd
}
void AdvanceDouble(uint64_t val) {
if (kNativeSoftFloatAbi) {
AdvanceLong(val);
} else {
if (HaveDoubleFpr()) {
if (DoubleFprNeedsPadding()) {
PushFpr4(0);
fpr_index_--;
}
PushFpr8(val);
fpr_index_ -= kRegistersNeededForDouble;
} else {
if (DoubleStackNeedsPadding()) {
PushStack(0);
stack_entries_++;
}
if (kRegistersNeededForDouble == 1) {
PushStack(static_cast<uintptr_t>(val));
stack_entries_++;
} else {
PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
stack_entries_ += 2;
}
fpr_index_ = 0;
}
}
}
uint32_t GetStackEntries() const {
return stack_entries_;
}
uint32_t GetNumberOfUsedGprs() const {
return kNumNativeGprArgs - gpr_index_;
}
uint32_t GetNumberOfUsedFprs() const {
return kNumNativeFprArgs - fpr_index_;
}
private:
void PushGpr(uintptr_t val) {
delegate_->PushGpr(val);
}
void PushFpr4(float val) {
delegate_->PushFpr4(val);
}
void PushFpr8(uint64_t val) {
delegate_->PushFpr8(val);
}
void PushStack(uintptr_t val) {
delegate_->PushStack(val);
}
uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
return delegate_->PushHandle(ref);
}
uint32_t gpr_index_; // Number of free GPRs
uint32_t fpr_index_; // Number of free FPRs
uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not
// extended
T* const delegate_; // What Push implementation gets called
};
// Computes the sizes of register stacks and call stack area. Handling of references can be extended
// in subclasses.
//
// To handle native pointers, use "L" in the shorty for an object reference, which simulates
// them with handles.
class ComputeNativeCallFrameSize {
public:
ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
virtual ~ComputeNativeCallFrameSize() {}
uint32_t GetStackSize() const {
return num_stack_entries_ * sizeof(uintptr_t);
}
uint8_t* LayoutCallStack(uint8_t* sp8) const {
sp8 -= GetStackSize();
// Align by kStackAlignment.
sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
return sp8;
}
uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
const {
// Assumption is OK right now, as we have soft-float arm
size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
sp8 -= fregs * sizeof(uintptr_t);
*start_fpr = reinterpret_cast<uint32_t*>(sp8);
size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
sp8 -= iregs * sizeof(uintptr_t);
*start_gpr = reinterpret_cast<uintptr_t*>(sp8);
return sp8;
}
uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
uint32_t** start_fpr) const {
// Native call stack.
sp8 = LayoutCallStack(sp8);
*start_stack = reinterpret_cast<uintptr_t*>(sp8);
// Put fprs and gprs below.
sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
// Return the new bottom.
return sp8;
}
virtual void WalkHeader(
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
REQUIRES_SHARED(Locks::mutator_lock_) {
}
void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
WalkHeader(&sm);
for (uint32_t i = 1; i < shorty_len; ++i) {
Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
switch (cur_type_) {
case Primitive::kPrimNot:
// TODO: fix abuse of mirror types.
sm.AdvanceHandleScope(
reinterpret_cast<mirror::Object*>(0x12345678));
break;
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
sm.AdvanceInt(0);
break;
case Primitive::kPrimFloat:
sm.AdvanceFloat(0);
break;
case Primitive::kPrimDouble:
sm.AdvanceDouble(0);
break;
case Primitive::kPrimLong:
sm.AdvanceLong(0);
break;
default:
LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
UNREACHABLE();
}
}
num_stack_entries_ = sm.GetStackEntries();
}
void PushGpr(uintptr_t /* val */) {
// not optimizing registers, yet
}
void PushFpr4(float /* val */) {
// not optimizing registers, yet
}
void PushFpr8(uint64_t /* val */) {
// not optimizing registers, yet
}
void PushStack(uintptr_t /* val */) {
// counting is already done in the superclass
}
virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
return reinterpret_cast<uintptr_t>(nullptr);
}
protected:
uint32_t num_stack_entries_;
};
class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
public:
explicit ComputeGenericJniFrameSize(bool critical_native)
: num_handle_scope_references_(0), critical_native_(critical_native) {}
// Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
// is at *m = sp. Will update to point to the bottom of the save frame.
//
// Note: assumes ComputeAll() has been run before.
void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* method = **m;
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
// First, fix up the layout of the callee-save frame.
// We have to squeeze in the HandleScope, and relocate the method pointer.
// "Free" the slot for the method.
sp8 += sizeof(void*); // In the callee-save frame we use a full pointer.
// Under the callee saves put handle scope and new method stack reference.
size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
sp8 -= scope_and_method;
// Align by kStackAlignment.
sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
*handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
num_handle_scope_references_);
// Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
uint8_t* method_pointer = sp8;
auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
*new_method_ref = method;
*m = new_method_ref;
}
// Adds space for the cookie. Note: may leave stack unaligned.
void LayoutCookie(uint8_t** sp) const {
// Reference cookie and padding
*sp -= 8;
}
// Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
// Returns the new bottom. Note: this may be unaligned.
uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
REQUIRES_SHARED(Locks::mutator_lock_) {
// First, fix up the layout of the callee-save frame.
// We have to squeeze in the HandleScope, and relocate the method pointer.
LayoutCalleeSaveFrame(self, m, sp, handle_scope);
// The bottom of the callee-save frame is now where the method is, *m.
uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
// Add space for cookie.
LayoutCookie(&sp8);
return sp8;
}
// WARNING: After this, *sp won't be pointing to the method anymore!
uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
uint32_t** start_fpr)
REQUIRES_SHARED(Locks::mutator_lock_) {
Walk(shorty, shorty_len);
// JNI part.
uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
// Return the new bottom.
return sp8;
}
uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
// Add JNIEnv* and jobj/jclass before the shorty-derived elements.
void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
REQUIRES_SHARED(Locks::mutator_lock_);
private:
uint32_t num_handle_scope_references_;
const bool critical_native_;
};
uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
num_handle_scope_references_++;
return reinterpret_cast<uintptr_t>(nullptr);
}
void ComputeGenericJniFrameSize::WalkHeader(
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
// First 2 parameters are always excluded for @CriticalNative.
if (UNLIKELY(critical_native_)) {
return;
}
// JNIEnv
sm->AdvancePointer(nullptr);
// Class object or this as first argument
sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
}
// Class to push values to three separate regions. Used to fill the native call part. Adheres to
// the template requirements of BuildGenericJniFrameStateMachine.
class FillNativeCall {
public:
FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
virtual ~FillNativeCall() {}
void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
cur_gpr_reg_ = gpr_regs;
cur_fpr_reg_ = fpr_regs;
cur_stack_arg_ = stack_args;
}
void PushGpr(uintptr_t val) {
*cur_gpr_reg_ = val;
cur_gpr_reg_++;
}
void PushFpr4(float val) {
*cur_fpr_reg_ = val;
cur_fpr_reg_++;
}
void PushFpr8(uint64_t val) {
uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
*tmp = val;
cur_fpr_reg_ += 2;
}
void PushStack(uintptr_t val) {
*cur_stack_arg_ = val;
cur_stack_arg_++;
}
virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
UNREACHABLE();
}
private:
uintptr_t* cur_gpr_reg_;
uint32_t* cur_fpr_reg_;
uintptr_t* cur_stack_arg_;
};
// Visits arguments on the stack placing them into a region lower down the stack for the benefit
// of transitioning into native code.
class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
public:
BuildGenericJniFrameVisitor(Thread* self,
bool is_static,
bool critical_native,
const char* shorty,
uint32_t shorty_len,
ArtMethod*** sp)
: QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
sm_(&jni_call_) {
ComputeGenericJniFrameSize fsc(critical_native);
uintptr_t* start_gpr_reg;
uint32_t* start_fpr_reg;
uintptr_t* start_stack_arg;
bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
&handle_scope_,
&start_stack_arg,
&start_gpr_reg, &start_fpr_reg);
jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
// First 2 parameters are always excluded for CriticalNative methods.
if (LIKELY(!critical_native)) {
// jni environment is always first argument
sm_.AdvancePointer(self->GetJniEnv());
if (is_static) {
sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
} // else "this" reference is already handled by QuickArgumentVisitor.
}
}
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
return handle_scope_->GetHandle(0).GetReference();
}
jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
return handle_scope_->GetHandle(0).ToJObject();
}
void* GetBottomOfUsedArea() const {
return bottom_of_used_area_;
}
private:
// A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
class FillJniCall FINAL : public FillNativeCall {
public:
FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
HandleScope* handle_scope, bool critical_native)
: FillNativeCall(gpr_regs, fpr_regs, stack_args),
handle_scope_(handle_scope),
cur_entry_(0),
critical_native_(critical_native) {}
uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
handle_scope_ = scope;
cur_entry_ = 0U;
}
void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
// Initialize padding entries.
size_t expected_slots = handle_scope_->NumberOfReferences();
while (cur_entry_ < expected_slots) {
handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
}
if (!critical_native_) {
// Non-critical natives have at least the self class (jclass) or this (jobject).
DCHECK_NE(cur_entry_, 0U);
}
}
bool CriticalNative() const {
return critical_native_;
}
private:
HandleScope* handle_scope_;
size_t cur_entry_;
const bool critical_native_;
};
HandleScope* handle_scope_;
FillJniCall jni_call_;
void* bottom_of_used_area_;
BuildNativeCallFrameStateMachine<FillJniCall> sm_;
DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
};
uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
uintptr_t tmp;
MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
h.Assign(ref);
tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
cur_entry_++;
return tmp;
}
void BuildGenericJniFrameVisitor::Visit() {
Primitive::Type type = GetParamPrimitiveType();
switch (type) {
case Primitive::kPrimLong: {
jlong long_arg;
if (IsSplitLongOrDouble()) {
long_arg = ReadSplitLongParam();
} else {
long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
}
sm_.AdvanceLong(long_arg);
break;
}
case Primitive::kPrimDouble: {
uint64_t double_arg;
if (IsSplitLongOrDouble()) {
// Read into union so that we don't case to a double.
double_arg = ReadSplitLongParam();
} else {
double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
}
sm_.AdvanceDouble(double_arg);
break;
}
case Primitive::kPrimNot: {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
break;
}
case Primitive::kPrimFloat:
sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
break;
case Primitive::kPrimBoolean: // Fall-through.
case Primitive::kPrimByte: // Fall-through.
case Primitive::kPrimChar: // Fall-through.
case Primitive::kPrimShort: // Fall-through.
case Primitive::kPrimInt: // Fall-through.
sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
}
void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
// Clear out rest of the scope.
jni_call_.ResetRemainingScopeSlots();
if (!jni_call_.CriticalNative()) {
// Install HandleScope.
self->PushHandleScope(handle_scope_);
}
}
#if defined(__arm__) || defined(__aarch64__)
extern "C" const void* artFindNativeMethod();
#else
extern "C" const void* artFindNativeMethod(Thread* self);
#endif
static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
uint32_t cookie,
bool fast_native ATTRIBUTE_UNUSED,
jobject l,
jobject lock) {
// TODO: add entrypoints for @FastNative returning objects.
if (lock != nullptr) {
return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
} else {
return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
}
}
static void artQuickGenericJniEndJNINonRef(Thread* self,
uint32_t cookie,
bool fast_native,
jobject lock) {
if (lock != nullptr) {
JniMethodEndSynchronized(cookie, lock, self);
// Ignore "fast_native" here because synchronized functions aren't very fast.
} else {
if (UNLIKELY(fast_native)) {
JniMethodFastEnd(cookie, self);
} else {
JniMethodEnd(cookie, self);
}
}
}
/*
* Initializes an alloca region assumed to be directly below sp for a native call:
* Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
* The final element on the stack is a pointer to the native code.
*
* On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
* We need to fix this, as the handle scope needs to go into the callee-save frame.
*
* The return of this function denotes:
* 1) How many bytes of the alloca can be released, if the value is non-negative.
* 2) An error, if the value is negative.
*/
extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* called = *sp;
DCHECK(called->IsNative()) << called->PrettyMethod(true);
// Fix up a callee-save frame at the bottom of the stack (at `*sp`,
// above the alloca region) while we check for optimization
// annotations, thus allowing stack walking until the completion of
// the JNI frame creation.
//
// Note however that the Generic JNI trampoline does not expect
// exception being thrown at that stage.
*sp = Runtime::Current()->GetCalleeSaveMethod(Runtime::CalleeSaveType::kSaveRefsAndArgs);
self->SetTopOfStack(sp);
uint32_t shorty_len = 0;
const char* shorty = called->GetShorty(&shorty_len);
// Optimization annotations lookup does not try to resolve classes,
// as this may throw an exception, which is not supported by the
// Generic JNI trampoline at this stage; instead, method's
// annotations' classes are looked up in the bootstrap class
// loader's resolved types (which won't trigger an exception).
bool critical_native = called->IsAnnotatedWithCriticalNative();
// ArtMethod::IsAnnotatedWithCriticalNative should not throw
// an exception; clear it if it happened anyway.
// TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()).
if (self->IsExceptionPending()) {
self->ClearException();
}
bool fast_native = called->IsAnnotatedWithFastNative();
// ArtMethod::IsAnnotatedWithFastNative should not throw
// an exception; clear it if it happened anyway.
// TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()).
if (self->IsExceptionPending()) {
self->ClearException();
}
bool normal_native = !critical_native && !fast_native;
// Restore the initial ArtMethod pointer at `*sp`.
*sp = called;
// Run the visitor and update sp.
BuildGenericJniFrameVisitor visitor(self,
called->IsStatic(),
critical_native,
shorty,
shorty_len,
&sp);
{
ScopedAssertNoThreadSuspension sants(__FUNCTION__);
visitor.VisitArguments();
// FinalizeHandleScope pushes the handle scope on the thread.
visitor.FinalizeHandleScope(self);
}
// Fix up managed-stack things in Thread.
self->SetTopOfStack(sp);
self->VerifyStack();
uint32_t cookie;
uint32_t* sp32;
// Skip calling JniMethodStart for @CriticalNative.
if (LIKELY(!critical_native)) {
// Start JNI, save the cookie.
if (called->IsSynchronized()) {
DCHECK(normal_native) << " @FastNative and synchronize is not supported";
cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
if (self->IsExceptionPending()) {
self->PopHandleScope();
// A negative value denotes an error.
return GetTwoWordFailureValue();
}
} else {
if (fast_native) {
cookie = JniMethodFastStart(self);
} else {
DCHECK(normal_native);
cookie = JniMethodStart(self);
}
}
sp32 = reinterpret_cast<uint32_t*>(sp);
*(sp32 - 1) = cookie;
}
// Retrieve the stored native code.
void const* nativeCode = called->GetEntryPointFromJni();
// There are two cases for the content of nativeCode:
// 1) Pointer to the native function.
// 2) Pointer to the trampoline for native code binding.
// In the second case, we need to execute the binding and continue with the actual native function
// pointer.
DCHECK(nativeCode != nullptr);
if (nativeCode == GetJniDlsymLookupStub()) {
#if defined(__arm__) || defined(__aarch64__)
nativeCode = artFindNativeMethod();
#else
nativeCode = artFindNativeMethod(self);
#endif
if (nativeCode == nullptr) {
DCHECK(self->IsExceptionPending()); // There should be an exception pending now.
// @CriticalNative calls do not need to call back into JniMethodEnd.
if (LIKELY(!critical_native)) {
// End JNI, as the assembly will move to deliver the exception.
jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
if (shorty[0] == 'L') {
artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
} else {
artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
}
}
return GetTwoWordFailureValue();
}
// Note that the native code pointer will be automatically set by artFindNativeMethod().
}
#if defined(__mips__) && !defined(__LP64__)
// On MIPS32 if the first two arguments are floating-point, we need to know their types
// so that art_quick_generic_jni_trampoline can correctly extract them from the stack
// and load into floating-point registers.
// Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
// view):
// (1)
// | DOUBLE | DOUBLE | other args, if any
// | F12 | F13 | F14 | F15 |
// | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
// (2)
// | DOUBLE | FLOAT | (PAD) | other args, if any
// | F12 | F13 | F14 | |
// | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
// (3)
// | FLOAT | (PAD) | DOUBLE | other args, if any
// | F12 | | F14 | F15 |
// | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
// (4)
// | FLOAT | FLOAT | other args, if any
// | F12 | F14 |
// | SP+0 | SP+4 | SP+8
// As you can see, only the last case (4) is special. In all others we can just
// load F12/F13 and F14/F15 in the same manner.
// Set bit 0 of the native code address to 1 in this case (valid code addresses
// are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
if (nativeCode != nullptr &&
shorty != nullptr &&
shorty_len >= 3 &&
shorty[1] == 'F' &&
shorty[2] == 'F') {
nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
}
#endif
// Return native code addr(lo) and bottom of alloca address(hi).
return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
reinterpret_cast<uintptr_t>(nativeCode));
}
// Defined in quick_jni_entrypoints.cc.
extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
jvalue result, uint64_t result_f, ArtMethod* called,
HandleScope* handle_scope);
/*
* Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
* unlocking.
*/
extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
jvalue result,
uint64_t result_f) {
// We're here just back from a native call. We don't have the shared mutator lock at this point
// yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
// anything that requires a mutator lock before that would cause problems as GC may have the
// exclusive mutator lock and may be moving objects, etc.
ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
ArtMethod* called = *sp;
uint32_t cookie = *(sp32 - 1);
HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
}
// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
// for the method pointer.
//
// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
template<InvokeType type, bool access_check>
static TwoWordReturn artInvokeCommon(uint32_t method_idx,
ObjPtr<mirror::Object> this_object,
Thread* self,
ArtMethod** sp) {
ScopedQuickEntrypointChecks sqec(self);
DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
if (UNLIKELY(method == nullptr)) {
const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
uint32_t shorty_len;
const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
{
// Remember the args in case a GC happens in FindMethodFromCode.
ScopedObjectAccessUnchecked soa(self->GetJniEnv());
RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
visitor.VisitArguments();
method = FindMethodFromCode<type, access_check>(method_idx,
&this_object,
caller_method,
self);
visitor.FixupReferences();
}
if (UNLIKELY(method == nullptr)) {
CHECK(self->IsExceptionPending());
return GetTwoWordFailureValue(); // Failure.
}
}
DCHECK(!self->IsExceptionPending());
const void* code = method->GetEntryPointFromQuickCompiledCode();
// When we return, the caller will branch to this address, so it had better not be 0!
DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
<< " location: "
<< method->GetDexFile()->GetLocation();
return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
reinterpret_cast<uintptr_t>(method));
}
// Explicit artInvokeCommon template function declarations to please analysis tool.
#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
TwoWordReturn artInvokeCommon<type, access_check>( \
uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
// See comments in runtime_support_asm.S
extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
}
extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
}
extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
uint32_t method_idx,
mirror::Object* this_object ATTRIBUTE_UNUSED,
Thread* self,
ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
// For static, this_object is not required and may be random garbage. Don't pass it down so that
// it doesn't cause ObjPtr alignment failure check.
return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
}
extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
}
extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
}
// Determine target of interface dispatch. The interface method and this object are known non-null.
// The interface method is the method returned by the dex cache in the conflict trampoline.
extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
mirror::Object* raw_this_object,
Thread* self,
ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(interface_method != nullptr);
ObjPtr<mirror::Object> this_object(raw_this_object);
ScopedQuickEntrypointChecks sqec(self);
StackHandleScope<1> hs(self);
Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
ArtMethod* method = nullptr;
ImTable* imt = cls->GetImt(kRuntimePointerSize);
if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
// If the interface method is already resolved, look whether we have a match in the
// ImtConflictTable.
ArtMethod* conflict_method = imt->Get(ImTable::GetImtIndex(interface_method),
kRuntimePointerSize);
if (LIKELY(conflict_method->IsRuntimeMethod())) {
ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
DCHECK(current_table != nullptr);
method = current_table->Lookup(interface_method, kRuntimePointerSize);
} else {
// It seems we aren't really a conflict method!
method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
}
if (method != nullptr) {
return GetTwoWordSuccessValue(
reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
reinterpret_cast<uintptr_t>(method));
}
// No match, use the IfTable.
method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
if (UNLIKELY(method == nullptr)) {
ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
interface_method, this_object, caller_method);
return GetTwoWordFailureValue(); // Failure.
}
} else {
// The interface method is unresolved, so look it up in the dex file of the caller.
DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
// Fetch the dex_method_idx of the target interface method from the caller.
uint32_t dex_method_idx;
uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
DCHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
Instruction::Code instr_code = instr->Opcode();
DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
instr_code == Instruction::INVOKE_INTERFACE_RANGE)
<< "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
if (instr_code == Instruction::INVOKE_INTERFACE) {
dex_method_idx = instr->VRegB_35c();
} else {
DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
dex_method_idx = instr->VRegB_3rc();
}
const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
->GetDexFile();
uint32_t shorty_len;
const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
&shorty_len);
{
// Remember the args in case a GC happens in FindMethodFromCode.
ScopedObjectAccessUnchecked soa(self->GetJniEnv());
RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
visitor.VisitArguments();
method = FindMethodFromCode<kInterface, false>(dex_method_idx,
&this_object,
caller_method,
self);
visitor.FixupReferences();
}
if (UNLIKELY(method == nullptr)) {
CHECK(self->IsExceptionPending());
return GetTwoWordFailureValue(); // Failure.
}
interface_method =
caller_method->GetDexCacheResolvedMethod(dex_method_idx, kRuntimePointerSize);
DCHECK(!interface_method->IsRuntimeMethod());
}
// We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
// We create a new table with the new pair { interface_method, method }.
uint32_t imt_index = ImTable::GetImtIndex(interface_method);
ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
if (conflict_method->IsRuntimeMethod()) {
ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
cls.Get(),
conflict_method,
interface_method,
method,
/*force_new_conflict_method*/false);
if (new_conflict_method != conflict_method) {
// Update the IMT if we create a new conflict method. No fence needed here, as the
// data is consistent.
imt->Set(imt_index,
new_conflict_method,
kRuntimePointerSize);
}
}
const void* code = method->GetEntryPointFromQuickCompiledCode();
// When we return, the caller will branch to this address, so it had better not be 0!
DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
<< " location: " << method->GetDexFile()->GetLocation();
return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
reinterpret_cast<uintptr_t>(method));
}
// Returns shorty type so the caller can determine how to put |result|
// into expected registers. The shorty type is static so the compiler
// could call different flavors of this code path depending on the
// shorty type though this would require different entry points for
// each type.
extern "C" uintptr_t artInvokePolymorphic(
JValue* result,
mirror::Object* raw_method_handle,
Thread* self,
ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
ScopedQuickEntrypointChecks sqec(self);
DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
// Start new JNI local reference state
JNIEnvExt* env = self->GetJniEnv();
ScopedObjectAccessUnchecked soa(env);
ScopedJniEnvLocalRefState env_state(env);
const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
// From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
const DexFile::CodeItem* code = caller_method->GetCodeItem();
const Instruction* inst = Instruction::At(&code->insns_[dex_pc]);
DCHECK(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC ||
inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
const DexFile* dex_file = caller_method->GetDexFile();
const uint32_t proto_idx = inst->VRegH();
const char* shorty = dex_file->GetShorty(proto_idx);
const size_t shorty_length = strlen(shorty);
static const bool kMethodIsStatic = false; // invoke() and invokeExact() are not static.
RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
gc_visitor.VisitArguments();
// Wrap raw_method_handle in a Handle for safety.
StackHandleScope<5> hs(self);
Handle<mirror::MethodHandle> method_handle(
hs.NewHandle(ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(raw_method_handle))));
raw_method_handle = nullptr;
self->EndAssertNoThreadSuspension(old_cause);
// Resolve method - it's either MethodHandle.invoke() or MethodHandle.invokeExact().
ClassLinker* linker = Runtime::Current()->GetClassLinker();
ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::kForceICCECheck>(self,
inst->VRegB(),
caller_method,
kVirtual);
DCHECK((resolved_method ==
jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) ||
(resolved_method ==
jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke)));
if (UNLIKELY(method_handle.IsNull())) {
ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
return static_cast<uintptr_t>('V');
}
Handle<mirror::Class> caller_class(hs.NewHandle(caller_method->GetDeclaringClass()));
Handle<mirror::MethodType> method_type(hs.NewHandle(linker->ResolveMethodType(
*dex_file, proto_idx,
hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()),
hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader()))));
// This implies we couldn't resolve one or more types in this method handle.
if (UNLIKELY(method_type.IsNull())) {
CHECK(self->IsExceptionPending());
return static_cast<uintptr_t>('V');
}
DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst->VRegA());
DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
// Fix references before constructing the shadow frame.
gc_visitor.FixupReferences();
// Construct shadow frame placing arguments consecutively from |first_arg|.
const bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
const size_t num_vregs = is_range ? inst->VRegA_4rcc() : inst->VRegA_45cc();
const size_t first_arg = 0;
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
ScopedStackedShadowFramePusher
frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
kMethodIsStatic,
shorty,
strlen(shorty),
shadow_frame,
first_arg);
shadow_frame_builder.VisitArguments();
// Push a transition back into managed code onto the linked list in thread.
ManagedStack fragment;
self->PushManagedStackFragment(&fragment);
// Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
// consecutive order.
uint32_t unused_args[Instruction::kMaxVarArgRegs] = {};
uint32_t first_callee_arg = first_arg + 1;
if (!DoInvokePolymorphic<true /* is_range */>(self,
resolved_method,
*shadow_frame,
method_handle,
method_type,
unused_args,
first_callee_arg,
result)) {
DCHECK(self->IsExceptionPending());
}
// Pop transition record.
self->PopManagedStackFragment(fragment);
return static_cast<uintptr_t>(shorty[0]);
}
} // namespace art