/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "art_method-inl.h" #include "base/enums.h" #include "callee_save_frame.h" #include "common_throws.h" #include "dex_file-inl.h" #include "dex_instruction-inl.h" #include "entrypoints/entrypoint_utils-inl.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "gc/accounting/card_table-inl.h" #include "imt_conflict_table.h" #include "imtable-inl.h" #include "interpreter/interpreter.h" #include "linear_alloc.h" #include "method_handles.h" #include "method_reference.h" #include "mirror/class-inl.h" #include "mirror/dex_cache-inl.h" #include "mirror/method.h" #include "mirror/method_handle_impl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "oat_quick_method_header.h" #include "quick_exception_handler.h" #include "runtime.h" #include "scoped_thread_state_change-inl.h" #include "stack.h" #include "debugger.h" #include "well_known_classes.h" namespace art { // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. class QuickArgumentVisitor { // Number of bytes for each out register in the caller method's frame. static constexpr size_t kBytesStackArgLocation = 4; // Frame size in bytes of a callee-save frame for RefsAndArgs. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs); #if defined(__arm__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | LR | // | ... | 4x6 bytes callee saves // | R3 | // | R2 | // | R1 | // | S15 | // | : | // | S0 | // | | 4x2 bytes padding // | Method* | <- sp static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat; static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat; static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat; static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat; static constexpr bool kQuickSkipOddFpRegisters = false; static constexpr size_t kNumQuickGprArgs = 3; static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16; static constexpr bool kGprFprLockstep = false; static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = arm::ArmCalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = arm::ArmCalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = arm::ArmCalleeSaveLrOffset(Runtime::kSaveRefsAndArgs); // Offset of return address. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); } #elif defined(__aarch64__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | LR | // | X29 | // | : | // | X20 | // | X7 | // | : | // | X1 | // | D7 | // | : | // | D0 | // | | padding // | Method* | <- sp static constexpr bool kSplitPairAcrossRegisterAndStack = false; static constexpr bool kAlignPairRegister = false; static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; static constexpr bool kQuickSkipOddFpRegisters = false; static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. static constexpr bool kGprFprLockstep = false; static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = arm64::Arm64CalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = arm64::Arm64CalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = arm64::Arm64CalleeSaveLrOffset(Runtime::kSaveRefsAndArgs); // Offset of return address. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); } #elif defined(__mips__) && !defined(__LP64__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | RA | // | ... | callee saves // | T1 | arg5 // | T0 | arg4 // | A3 | arg3 // | A2 | arg2 // | A1 | arg1 // | F19 | // | F18 | f_arg5 // | F17 | // | F16 | f_arg4 // | F15 | // | F14 | f_arg3 // | F13 | // | F12 | f_arg2 // | F11 | // | F10 | f_arg1 // | F9 | // | F8 | f_arg0 // | | padding // | A0/Method* | <- sp static constexpr bool kSplitPairAcrossRegisterAndStack = false; static constexpr bool kAlignPairRegister = true; static constexpr bool kQuickSoftFloatAbi = false; static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; static constexpr bool kQuickSkipOddFpRegisters = true; static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. static constexpr size_t kNumQuickFprArgs = 12; // 6 arguments passed in FPRs. Floats can be // passed only in even numbered registers and each // double occupies two registers. static constexpr bool kGprFprLockstep = false; static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108; // Offset of return address. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); } #elif defined(__mips__) && defined(__LP64__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | RA | // | ... | callee saves // | A7 | arg7 // | A6 | arg6 // | A5 | arg5 // | A4 | arg4 // | A3 | arg3 // | A2 | arg2 // | A1 | arg1 // | F19 | f_arg7 // | F18 | f_arg6 // | F17 | f_arg5 // | F16 | f_arg4 // | F15 | f_arg3 // | F14 | f_arg2 // | F13 | f_arg1 // | F12 | f_arg0 // | | padding // | A0/Method* | <- sp // NOTE: for Mip64, when A0 is skipped, F12 is also skipped. static constexpr bool kSplitPairAcrossRegisterAndStack = false; static constexpr bool kAlignPairRegister = false; static constexpr bool kQuickSoftFloatAbi = false; static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; static constexpr bool kQuickSkipOddFpRegisters = false; static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. static constexpr size_t kNumQuickFprArgs = 7; // 7 arguments passed in FPRs. static constexpr bool kGprFprLockstep = true; static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24; // Offset of first FPR arg (F13). static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg (A1). static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200; // Offset of return address. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); } #elif defined(__i386__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | Return | // | EBP,ESI,EDI | callee saves // | EBX | arg3 // | EDX | arg2 // | ECX | arg1 // | XMM3 | float arg 4 // | XMM2 | float arg 3 // | XMM1 | float arg 2 // | XMM0 | float arg 1 // | EAX/Method* | <- sp static constexpr bool kSplitPairAcrossRegisterAndStack = false; static constexpr bool kAlignPairRegister = false; static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; static constexpr bool kQuickSkipOddFpRegisters = false; static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs. static constexpr bool kGprFprLockstep = false; static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8; // Offset of return address. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); } #elif defined(__x86_64__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | reg. arg spills | | Caller's frame // | Method* | --- // | Return | // | R15 | callee save // | R14 | callee save // | R13 | callee save // | R12 | callee save // | R9 | arg5 // | R8 | arg4 // | RSI/R6 | arg1 // | RBP/R5 | callee save // | RBX/R3 | callee save // | RDX/R2 | arg2 // | RCX/R1 | arg3 // | XMM7 | float arg 8 // | XMM6 | float arg 7 // | XMM5 | float arg 6 // | XMM4 | float arg 5 // | XMM3 | float arg 4 // | XMM2 | float arg 3 // | XMM1 | float arg 2 // | XMM0 | float arg 1 // | Padding | // | RDI/Method* | <- sp static constexpr bool kSplitPairAcrossRegisterAndStack = false; static constexpr bool kAlignPairRegister = false; static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; static constexpr bool kQuickSkipOddFpRegisters = false; static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. static constexpr bool kGprFprLockstep = false; static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address. static size_t GprIndexToGprOffset(uint32_t gpr_index) { switch (gpr_index) { case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); default: LOG(FATAL) << "Unexpected GPR index: " << gpr_index; return 0; } } #else #error "Unsupported architecture" #endif public: // Special handling for proxy methods. Proxy methods are instance methods so the // 'this' object is the 1st argument. They also have the same frame layout as the // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the // 1st GPR. static mirror::Object* GetProxyThisObject(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK((*sp)->IsProxyMethod()); CHECK_GT(kNumQuickGprArgs, 0u); constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR. size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset + GprIndexToGprOffset(kThisGprIndex); uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset; return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr(); } static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK((*sp)->IsCalleeSaveMethod()); return GetCalleeSaveMethodCaller(sp, Runtime::kSaveRefsAndArgs); } static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK((*sp)->IsCalleeSaveMethod()); uint8_t* previous_sp = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; return *reinterpret_cast<ArtMethod**>(previous_sp); } static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK((*sp)->IsCalleeSaveMethod()); const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs); ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>( reinterpret_cast<uintptr_t>(sp) + callee_frame_size); uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp); const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc); uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc); if (current_code->IsOptimized()) { CodeInfo code_info = current_code->GetOptimizedCodeInfo(); CodeInfoEncoding encoding = code_info.ExtractEncoding(); StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding); DCHECK(stack_map.IsValid()); if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) { InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding); return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding, inline_info.GetDepth(encoding.inline_info.encoding)-1); } else { return stack_map.GetDexPc(encoding.stack_map.encoding); } } else { return current_code->ToDexPc(*caller_sp, outer_pc); } } static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK((*sp)->IsCalleeSaveMethod()); const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs); ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>( reinterpret_cast<uintptr_t>(sp) + callee_frame_size); uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp); const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc); if (!current_code->IsOptimized()) { return false; } uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc); CodeInfo code_info = current_code->GetOptimizedCodeInfo(); CodeInfoEncoding encoding = code_info.ExtractEncoding(); MethodInfo method_info = current_code->GetOptimizedMethodInfo(); InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding)); if (invoke.IsValid()) { *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding)); *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info); return true; } return false; } // For the given quick ref and args quick frame, return the caller's PC. static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK((*sp)->IsCalleeSaveMethod()); uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; return *reinterpret_cast<uintptr_t*>(lr); } QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) : is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize + sizeof(ArtMethod*)), // Skip ArtMethod*. gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) { static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0), "Number of Quick FPR arguments unexpected"); static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled), "Double alignment unexpected"); // For register alignment, we want to assume that counters(fpr_double_index_) are even if the // next register is even. static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0, "Number of Quick FPR arguments not even"); DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize); } virtual ~QuickArgumentVisitor() {} virtual void Visit() = 0; Primitive::Type GetParamPrimitiveType() const { return cur_type_; } uint8_t* GetParamAddress() const { if (!kQuickSoftFloatAbi) { Primitive::Type type = GetParamPrimitiveType(); if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) { if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); } } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); } return stack_args_ + (stack_index_ * kBytesStackArgLocation); } } if (gpr_index_ < kNumQuickGprArgs) { return gpr_args_ + GprIndexToGprOffset(gpr_index_); } return stack_args_ + (stack_index_ * kBytesStackArgLocation); } bool IsSplitLongOrDouble() const { if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { return is_split_long_or_double_; } else { return false; // An optimization for when GPR and FPRs are 64bit. } } bool IsParamAReference() const { return GetParamPrimitiveType() == Primitive::kPrimNot; } bool IsParamALongOrDouble() const { Primitive::Type type = GetParamPrimitiveType(); return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; } uint64_t ReadSplitLongParam() const { // The splitted long is always available through the stack. return *reinterpret_cast<uint64_t*>(stack_args_ + stack_index_ * kBytesStackArgLocation); } void IncGprIndex() { gpr_index_++; if (kGprFprLockstep) { fpr_index_++; } } void IncFprIndex() { fpr_index_++; if (kGprFprLockstep) { gpr_index_++; } } void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) { // (a) 'stack_args_' should point to the first method's argument // (b) whatever the argument type it is, the 'stack_index_' should // be moved forward along with every visiting. gpr_index_ = 0; fpr_index_ = 0; if (kQuickDoubleRegAlignedFloatBackFilled) { fpr_double_index_ = 0; } stack_index_ = 0; if (!is_static_) { // Handle this. cur_type_ = Primitive::kPrimNot; is_split_long_or_double_ = false; Visit(); stack_index_++; if (kNumQuickGprArgs > 0) { IncGprIndex(); } } for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { cur_type_ = Primitive::GetType(shorty_[shorty_index]); switch (cur_type_) { case Primitive::kPrimNot: case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: is_split_long_or_double_ = false; Visit(); stack_index_++; if (gpr_index_ < kNumQuickGprArgs) { IncGprIndex(); } break; case Primitive::kPrimFloat: is_split_long_or_double_ = false; Visit(); stack_index_++; if (kQuickSoftFloatAbi) { if (gpr_index_ < kNumQuickGprArgs) { IncGprIndex(); } } else { if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { IncFprIndex(); if (kQuickDoubleRegAlignedFloatBackFilled) { // Double should not overlap with float. // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4. fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2)); // Float should not overlap with double. if (fpr_index_ % 2 == 0) { fpr_index_ = std::max(fpr_double_index_, fpr_index_); } } else if (kQuickSkipOddFpRegisters) { IncFprIndex(); } } } break; case Primitive::kPrimDouble: case Primitive::kPrimLong: if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { if (cur_type_ == Primitive::kPrimLong && #if defined(__mips__) && !defined(__LP64__) (gpr_index_ == 0 || gpr_index_ == 2) && #else gpr_index_ == 0 && #endif kAlignPairRegister) { // Currently, this is only for ARM and MIPS, where we align long parameters with // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using // R2 (on ARM) or A2(T0) (on MIPS) instead. IncGprIndex(); } is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && ((gpr_index_ + 1) == kNumQuickGprArgs); if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) { // We don't want to split this. Pass over this register. gpr_index_++; is_split_long_or_double_ = false; } Visit(); if (kBytesStackArgLocation == 4) { stack_index_+= 2; } else { CHECK_EQ(kBytesStackArgLocation, 8U); stack_index_++; } if (gpr_index_ < kNumQuickGprArgs) { IncGprIndex(); if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { if (gpr_index_ < kNumQuickGprArgs) { IncGprIndex(); } } } } else { is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled; Visit(); if (kBytesStackArgLocation == 4) { stack_index_+= 2; } else { CHECK_EQ(kBytesStackArgLocation, 8U); stack_index_++; } if (kQuickDoubleRegAlignedFloatBackFilled) { if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { fpr_double_index_ += 2; // Float should not overlap with double. if (fpr_index_ % 2 == 0) { fpr_index_ = std::max(fpr_double_index_, fpr_index_); } } } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { IncFprIndex(); if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { IncFprIndex(); } } } } break; default: LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; } } } protected: const bool is_static_; const char* const shorty_; const uint32_t shorty_len_; private: uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame. uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame. uint8_t* const stack_args_; // Address of stack arguments in caller's frame. uint32_t gpr_index_; // Index into spilled GPRs. // Index into spilled FPRs. // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_ // holds a higher register number. uint32_t fpr_index_; // Index into spilled FPRs for aligned double. // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in // terms of singles, may be behind fpr_index. uint32_t fpr_double_index_; uint32_t stack_index_; // Index into arguments on the stack. // The current type of argument during VisitArguments. Primitive::Type cur_type_; // Does a 64bit parameter straddle the register and stack arguments? bool is_split_long_or_double_; }; // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It // allows to use the QuickArgumentVisitor constants without moving all the code in its own module. extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { return QuickArgumentVisitor::GetProxyThisObject(sp); } // Visits arguments on the stack placing them into the shadow frame. class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { public: BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) : QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; private: ShadowFrame* const sf_; uint32_t cur_reg_; DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); }; void BuildQuickShadowFrameVisitor::Visit() { Primitive::Type type = GetParamPrimitiveType(); switch (type) { case Primitive::kPrimLong: // Fall-through. case Primitive::kPrimDouble: if (IsSplitLongOrDouble()) { sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); } else { sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); } ++cur_reg_; break; case Primitive::kPrimNot: { StackReference<mirror::Object>* stack_ref = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); } break; case Primitive::kPrimBoolean: // Fall-through. case Primitive::kPrimByte: // Fall-through. case Primitive::kPrimChar: // Fall-through. case Primitive::kPrimShort: // Fall-through. case Primitive::kPrimInt: // Fall-through. case Primitive::kPrimFloat: sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); break; case Primitive::kPrimVoid: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } ++cur_reg_; } extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { // Ensure we don't get thread suspension until the object arguments are safely in the shadow // frame. ScopedQuickEntrypointChecks sqec(self); if (UNLIKELY(!method->IsInvokable())) { method->ThrowInvocationTimeError(); return 0; } JValue tmp_value; ShadowFrame* deopt_frame = self->PopStackedShadowFrame( StackedShadowFrameType::kDeoptimizationShadowFrame, false); ManagedStack fragment; DCHECK(!method->IsNative()) << method->PrettyMethod(); uint32_t shorty_len = 0; ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem(); DCHECK(code_item != nullptr) << method->PrettyMethod(); const char* shorty = non_proxy_method->GetShorty(&shorty_len); JValue result; if (deopt_frame != nullptr) { // Coming from partial-fragment deopt. if (kIsDebugBuild) { // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom // of the call-stack) corresponds to the called method. ShadowFrame* linked = deopt_frame; while (linked->GetLink() != nullptr) { linked = linked->GetLink(); } CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " " << ArtMethod::PrettyMethod(linked->GetMethod()); } if (VLOG_IS_ON(deopt)) { // Print out the stack to verify that it was a partial-fragment deopt. LOG(INFO) << "Continue-ing from deopt. Stack is:"; QuickExceptionHandler::DumpFramesWithType(self, true); } ObjPtr<mirror::Throwable> pending_exception; bool from_code = false; self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code); // Push a transition back into managed code onto the linked list in thread. self->PushManagedStackFragment(&fragment); // Ensure that the stack is still in order. if (kIsDebugBuild) { class DummyStackVisitor : public StackVisitor { public: explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_) : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {} bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking // logic. Just always say we want to continue. return true; } }; DummyStackVisitor dsv(self); dsv.WalkStack(); } // Restore the exception that was pending before deoptimization then interpret the // deoptimized frames. if (pending_exception != nullptr) { self->SetException(pending_exception); } interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result); } else { const char* old_cause = self->StartAssertNoThreadSuspension( "Building interpreter shadow frame"); uint16_t num_regs = code_item->registers_size_; // No last shadow coming from quick. ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0); ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len, shadow_frame, first_arg_reg); shadow_frame_builder.VisitArguments(); const bool needs_initialization = method->IsStatic() && !method->GetDeclaringClass()->IsInitialized(); // Push a transition back into managed code onto the linked list in thread. self->PushManagedStackFragment(&fragment); self->PushShadowFrame(shadow_frame); self->EndAssertNoThreadSuspension(old_cause); if (needs_initialization) { // Ensure static method's class is initialized. StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass())); if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { DCHECK(Thread::Current()->IsExceptionPending()) << shadow_frame->GetMethod()->PrettyMethod(); self->PopManagedStackFragment(fragment); return 0; } } result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame); } // Pop transition. self->PopManagedStackFragment(fragment); // Request a stack deoptimization if needed ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp); // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization // should be done and it knows the real return pc. if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) && Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) { if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) { LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method " << caller->PrettyMethod(); } else { // Push the context of the deoptimization stack so we can restore the return value and the // exception before executing the deoptimized frames. self->PushDeoptimizationContext( result, shorty[0] == 'L', /* from_code */ false, self->GetException()); // Set special exception to cause deoptimization. self->SetException(Thread::GetDeoptimizationException()); } } // No need to restore the args since the method has already been run by the interpreter. return result.GetJ(); } // Visits arguments on the stack placing them into the args vector, Object* arguments are converted // to jobjects. class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { public: BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_); private: ScopedObjectAccessUnchecked* const soa_; std::vector<jvalue>* const args_; // References which we must update when exiting in case the GC moved the objects. std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); }; void BuildQuickArgumentVisitor::Visit() { jvalue val; Primitive::Type type = GetParamPrimitiveType(); switch (type) { case Primitive::kPrimNot: { StackReference<mirror::Object>* stack_ref = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); references_.push_back(std::make_pair(val.l, stack_ref)); break; } case Primitive::kPrimLong: // Fall-through. case Primitive::kPrimDouble: if (IsSplitLongOrDouble()) { val.j = ReadSplitLongParam(); } else { val.j = *reinterpret_cast<jlong*>(GetParamAddress()); } break; case Primitive::kPrimBoolean: // Fall-through. case Primitive::kPrimByte: // Fall-through. case Primitive::kPrimChar: // Fall-through. case Primitive::kPrimShort: // Fall-through. case Primitive::kPrimInt: // Fall-through. case Primitive::kPrimFloat: val.i = *reinterpret_cast<jint*>(GetParamAddress()); break; case Primitive::kPrimVoid: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } args_->push_back(val); } void BuildQuickArgumentVisitor::FixupReferences() { // Fixup any references which may have changed. for (const auto& pair : references_) { pair.second->Assign(soa_->Decode<mirror::Object>(pair.first)); soa_->Env()->DeleteLocalRef(pair.first); } } // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method // which is responsible for recording callee save registers. We explicitly place into jobjects the // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a // field within the proxy object, which will box the primitive arguments and deal with error cases. extern "C" uint64_t artQuickProxyInvokeHandler( ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod(); DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod(); // Ensure we don't get thread suspension until the object arguments are safely in jobjects. const char* old_cause = self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); // Register the top of the managed stack, making stack crawlable. DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod(); self->VerifyStack(); // Start new JNI local reference state. JNIEnvExt* env = self->GetJniEnv(); ScopedObjectAccessUnchecked soa(env); ScopedJniEnvLocalRefState env_state(env); // Create local ref. copies of proxy method and the receiver. jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); // Placing arguments into args vector and remove the receiver. ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize); CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod(); std::vector<jvalue> args; uint32_t shorty_len = 0; const char* shorty = non_proxy_method->GetShorty(&shorty_len); BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args); local_ref_visitor.VisitArguments(); DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod(); args.erase(args.begin()); // Convert proxy method into expected interface method. ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize); DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod(); DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod(); self->EndAssertNoThreadSuspension(old_cause); DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize); DCHECK(!Runtime::Current()->IsActiveTransaction()); jobject interface_method_jobj = soa.AddLocalReference<jobject>( mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method)); // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code // that performs allocations. JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args); // Restore references which might have moved. local_ref_visitor.FixupReferences(); return result.GetJ(); } // Read object references held in arguments from quick frames and place in a JNI local references, // so they don't get garbage collected. class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { public: RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) : QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_); private: ScopedObjectAccessUnchecked* const soa_; // References which we must update when exiting in case the GC moved the objects. std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_; DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); }; void RememberForGcArgumentVisitor::Visit() { if (IsParamAReference()) { StackReference<mirror::Object>* stack_ref = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); jobject reference = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); references_.push_back(std::make_pair(reference, stack_ref)); } } void RememberForGcArgumentVisitor::FixupReferences() { // Fixup any references which may have changed. for (const auto& pair : references_) { pair.second->Assign(soa_->Decode<mirror::Object>(pair.first)); soa_->Env()->DeleteLocalRef(pair.first); } } // Lazily resolve a method for quick. Called by stub code. extern "C" const void* artQuickResolutionTrampoline( ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { // The resolution trampoline stashes the resolved method into the callee-save frame to transport // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely // does not have the same stack layout as the callee-save method). ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false); // Start new JNI local reference state JNIEnvExt* env = self->GetJniEnv(); ScopedObjectAccessUnchecked soa(env); ScopedJniEnvLocalRefState env_state(env); const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); // Compute details about the called method (avoid GCs) ClassLinker* linker = Runtime::Current()->GetClassLinker(); InvokeType invoke_type; MethodReference called_method(nullptr, 0); const bool called_method_known_on_entry = !called->IsRuntimeMethod(); ArtMethod* caller = nullptr; if (!called_method_known_on_entry) { caller = QuickArgumentVisitor::GetCallingMethod(sp); called_method.dex_file = caller->GetDexFile(); InvokeType stack_map_invoke_type; uint32_t stack_map_dex_method_idx; const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp, &stack_map_invoke_type, &stack_map_dex_method_idx); // For debug builds, we make sure both of the paths are consistent by also looking at the dex // code. if (!found_stack_map || kIsDebugBuild) { uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); const DexFile::CodeItem* code; code = caller->GetCodeItem(); CHECK_LT(dex_pc, code->insns_size_in_code_units_); const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); Instruction::Code instr_code = instr->Opcode(); bool is_range; switch (instr_code) { case Instruction::INVOKE_DIRECT: invoke_type = kDirect; is_range = false; break; case Instruction::INVOKE_DIRECT_RANGE: invoke_type = kDirect; is_range = true; break; case Instruction::INVOKE_STATIC: invoke_type = kStatic; is_range = false; break; case Instruction::INVOKE_STATIC_RANGE: invoke_type = kStatic; is_range = true; break; case Instruction::INVOKE_SUPER: invoke_type = kSuper; is_range = false; break; case Instruction::INVOKE_SUPER_RANGE: invoke_type = kSuper; is_range = true; break; case Instruction::INVOKE_VIRTUAL: invoke_type = kVirtual; is_range = false; break; case Instruction::INVOKE_VIRTUAL_RANGE: invoke_type = kVirtual; is_range = true; break; case Instruction::INVOKE_INTERFACE: invoke_type = kInterface; is_range = false; break; case Instruction::INVOKE_INTERFACE_RANGE: invoke_type = kInterface; is_range = true; break; default: LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr); UNREACHABLE(); } called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); // Check that the invoke matches what we expected, note that this path only happens for debug // builds. if (found_stack_map) { DCHECK_EQ(stack_map_invoke_type, invoke_type); if (invoke_type != kSuper) { // Super may be sharpened. DCHECK_EQ(stack_map_dex_method_idx, called_method.dex_method_index) << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " " << called_method.dex_file->PrettyMethod(called_method.dex_method_index); } } else { VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " " << called_method.dex_method_index; } } else { invoke_type = stack_map_invoke_type; called_method.dex_method_index = stack_map_dex_method_idx; } } else { invoke_type = kStatic; called_method.dex_file = called->GetDexFile(); called_method.dex_method_index = called->GetDexMethodIndex(); } uint32_t shorty_len; const char* shorty = called_method.dex_file->GetMethodShorty( called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len); RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); visitor.VisitArguments(); self->EndAssertNoThreadSuspension(old_cause); const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; // Resolve method filling in dex cache. if (!called_method_known_on_entry) { StackHandleScope<1> hs(self); mirror::Object* dummy = nullptr; HandleWrapper<mirror::Object> h_receiver( hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); called = linker->ResolveMethod<ClassLinker::kForceICCECheck>( self, called_method.dex_method_index, caller, invoke_type); } const void* code = nullptr; if (LIKELY(!self->IsExceptionPending())) { // Incompatible class change should have been handled in resolve method. CHECK(!called->CheckIncompatibleClassChange(invoke_type)) << called->PrettyMethod() << " " << invoke_type; if (virtual_or_interface || invoke_type == kSuper) { // Refine called method based on receiver for kVirtual/kInterface, and // caller for kSuper. ArtMethod* orig_called = called; if (invoke_type == kVirtual) { CHECK(receiver != nullptr) << invoke_type; called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize); } else if (invoke_type == kInterface) { CHECK(receiver != nullptr) << invoke_type; called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize); } else { DCHECK_EQ(invoke_type, kSuper); CHECK(caller != nullptr) << invoke_type; StackHandleScope<2> hs(self); Handle<mirror::DexCache> dex_cache( hs.NewHandle(caller->GetDeclaringClass()->GetDexCache())); Handle<mirror::ClassLoader> class_loader( hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader())); // TODO Maybe put this into a mirror::Class function. mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod( called_method.dex_method_index, dex_cache, class_loader); if (ref_class->IsInterface()) { called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize); } else { called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry( called->GetMethodIndex(), kRuntimePointerSize); } } CHECK(called != nullptr) << orig_called->PrettyMethod() << " " << mirror::Object::PrettyTypeOf(receiver) << " " << invoke_type << " " << orig_called->GetVtableIndex(); // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index // of the sharpened method avoiding dirtying the dex cache if possible. // Note, called_method.dex_method_index references the dex method before the // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares // about the name and signature. uint32_t update_dex_cache_method_index = called->GetDexMethodIndex(); if (!called->HasSameDexCacheResolvedMethods(caller, kRuntimePointerSize)) { // Calling from one dex file to another, need to compute the method index appropriate to // the caller's dex file. Since we get here only if the original called was a runtime // method, we've got the correct dex_file and a dex_method_idx from above. DCHECK(!called_method_known_on_entry); DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); const DexFile* caller_dex_file = called_method.dex_file; uint32_t caller_method_name_and_sig_index = called_method.dex_method_index; update_dex_cache_method_index = called->FindDexMethodIndexInOtherDexFile(*caller_dex_file, caller_method_name_and_sig_index); } if ((update_dex_cache_method_index != DexFile::kDexNoIndex) && (caller->GetDexCacheResolvedMethod( update_dex_cache_method_index, kRuntimePointerSize) != called)) { caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, kRuntimePointerSize); } } else if (invoke_type == kStatic) { const auto called_dex_method_idx = called->GetDexMethodIndex(); // For static invokes, we may dispatch to the static method in the superclass but resolve // using the subclass. To prevent getting slow paths on each invoke, we force set the // resolved method for the super class dex method index if we are in the same dex file. // b/19175856 if (called->GetDexFile() == called_method.dex_file && called_method.dex_method_index != called_dex_method_idx) { called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, kRuntimePointerSize); } } // Ensure that the called method's class is initialized. StackHandleScope<1> hs(soa.Self()); Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); linker->EnsureInitialized(soa.Self(), called_class, true, true); if (LIKELY(called_class->IsInitialized())) { if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) { // If we are single-stepping or the called method is deoptimized (by a // breakpoint, for example), then we have to execute the called method // with the interpreter. code = GetQuickToInterpreterBridge(); } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) { // If the caller is deoptimized (by a breakpoint, for example), we have to // continue its execution with interpreter when returning from the called // method. Because we do not want to execute the called method with the // interpreter, we wrap its execution into the instrumentation stubs. // When the called method returns, it will execute the instrumentation // exit hook that will determine the need of the interpreter with a call // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if // it is needed. code = GetQuickInstrumentationEntryPoint(); } else { code = called->GetEntryPointFromQuickCompiledCode(); } } else if (called_class->IsInitializing()) { if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) { // If we are single-stepping or the called method is deoptimized (by a // breakpoint, for example), then we have to execute the called method // with the interpreter. code = GetQuickToInterpreterBridge(); } else if (invoke_type == kStatic) { // Class is still initializing, go to oat and grab code (trampoline must be left in place // until class is initialized to stop races between threads). code = linker->GetQuickOatCodeFor(called); } else { // No trampoline for non-static methods. code = called->GetEntryPointFromQuickCompiledCode(); } } else { DCHECK(called_class->IsErroneous()); } } CHECK_EQ(code == nullptr, self->IsExceptionPending()); // Fixup any locally saved objects may have moved during a GC. visitor.FixupReferences(); // Place called method in callee-save frame to be placed as first argument to quick method. *sp = called; return code; } /* * This class uses a couple of observations to unite the different calling conventions through * a few constants. * * 1) Number of registers used for passing is normally even, so counting down has no penalty for * possible alignment. * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote * when we have to split things * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats * and we can use Int handling directly. * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code * necessary when widening. Also, widening of Ints will take place implicitly, and the * extension should be compatible with Aarch64, which mandates copying the available bits * into LSB and leaving the rest unspecified. * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on * the stack. * 6) There is only little endian. * * * Actual work is supposed to be done in a delegate of the template type. The interface is as * follows: * * void PushGpr(uintptr_t): Add a value for the next GPR * * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need * padding, that is, think the architecture is 32b and aligns 64b. * * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to * split this if necessary. The current state will have aligned, if * necessary. * * void PushStack(uintptr_t): Push a value to the stack. * * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, * as this might be important for null initialization. * Must return the jobject, that is, the reference to the * entry in the HandleScope (nullptr if necessary). * */ template<class T> class BuildNativeCallFrameStateMachine { public: #if defined(__arm__) // TODO: These are all dummy values! static constexpr bool kNativeSoftFloatAbi = true; static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. static constexpr size_t kRegistersNeededForLong = 2; static constexpr size_t kRegistersNeededForDouble = 2; static constexpr bool kMultiRegistersAligned = true; static constexpr bool kMultiFPRegistersWidened = false; static constexpr bool kMultiGPRegistersWidened = false; static constexpr bool kAlignLongOnStack = true; static constexpr bool kAlignDoubleOnStack = true; #elif defined(__aarch64__) static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. static constexpr size_t kRegistersNeededForLong = 1; static constexpr size_t kRegistersNeededForDouble = 1; static constexpr bool kMultiRegistersAligned = false; static constexpr bool kMultiFPRegistersWidened = false; static constexpr bool kMultiGPRegistersWidened = false; static constexpr bool kAlignLongOnStack = false; static constexpr bool kAlignDoubleOnStack = false; #elif defined(__mips__) && !defined(__LP64__) static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs. static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. static constexpr size_t kRegistersNeededForLong = 2; static constexpr size_t kRegistersNeededForDouble = 2; static constexpr bool kMultiRegistersAligned = true; static constexpr bool kMultiFPRegistersWidened = true; static constexpr bool kMultiGPRegistersWidened = false; static constexpr bool kAlignLongOnStack = true; static constexpr bool kAlignDoubleOnStack = true; #elif defined(__mips__) && defined(__LP64__) // Let the code prepare GPRs only and we will load the FPRs with same data. static constexpr bool kNativeSoftFloatAbi = true; static constexpr size_t kNumNativeGprArgs = 8; static constexpr size_t kNumNativeFprArgs = 0; static constexpr size_t kRegistersNeededForLong = 1; static constexpr size_t kRegistersNeededForDouble = 1; static constexpr bool kMultiRegistersAligned = false; static constexpr bool kMultiFPRegistersWidened = false; static constexpr bool kMultiGPRegistersWidened = true; static constexpr bool kAlignLongOnStack = false; static constexpr bool kAlignDoubleOnStack = false; #elif defined(__i386__) // TODO: Check these! static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. static constexpr size_t kRegistersNeededForLong = 2; static constexpr size_t kRegistersNeededForDouble = 2; static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways static constexpr bool kMultiFPRegistersWidened = false; static constexpr bool kMultiGPRegistersWidened = false; static constexpr bool kAlignLongOnStack = false; static constexpr bool kAlignDoubleOnStack = false; #elif defined(__x86_64__) static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. static constexpr size_t kRegistersNeededForLong = 1; static constexpr size_t kRegistersNeededForDouble = 1; static constexpr bool kMultiRegistersAligned = false; static constexpr bool kMultiFPRegistersWidened = false; static constexpr bool kMultiGPRegistersWidened = false; static constexpr bool kAlignLongOnStack = false; static constexpr bool kAlignDoubleOnStack = false; #else #error "Unsupported architecture" #endif public: explicit BuildNativeCallFrameStateMachine(T* delegate) : gpr_index_(kNumNativeGprArgs), fpr_index_(kNumNativeFprArgs), stack_entries_(0), delegate_(delegate) { // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff // the next register is even; counting down is just to make the compiler happy... static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even"); static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even"); } virtual ~BuildNativeCallFrameStateMachine() {} bool HavePointerGpr() const { return gpr_index_ > 0; } void AdvancePointer(const void* val) { if (HavePointerGpr()) { gpr_index_--; PushGpr(reinterpret_cast<uintptr_t>(val)); } else { stack_entries_++; // TODO: have a field for pointer length as multiple of 32b PushStack(reinterpret_cast<uintptr_t>(val)); gpr_index_ = 0; } } bool HaveHandleScopeGpr() const { return gpr_index_ > 0; } void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) { uintptr_t handle = PushHandle(ptr); if (HaveHandleScopeGpr()) { gpr_index_--; PushGpr(handle); } else { stack_entries_++; PushStack(handle); gpr_index_ = 0; } } bool HaveIntGpr() const { return gpr_index_ > 0; } void AdvanceInt(uint32_t val) { if (HaveIntGpr()) { gpr_index_--; if (kMultiGPRegistersWidened) { DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val))); } else { PushGpr(val); } } else { stack_entries_++; if (kMultiGPRegistersWidened) { DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val))); } else { PushStack(val); } gpr_index_ = 0; } } bool HaveLongGpr() const { return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); } bool LongGprNeedsPadding() const { return kRegistersNeededForLong > 1 && // only pad when using multiple registers kAlignLongOnStack && // and when it needs alignment (gpr_index_ & 1) == 1; // counter is odd, see constructor } bool LongStackNeedsPadding() const { return kRegistersNeededForLong > 1 && // only pad when using multiple registers kAlignLongOnStack && // and when it needs 8B alignment (stack_entries_ & 1) == 1; // counter is odd } void AdvanceLong(uint64_t val) { if (HaveLongGpr()) { if (LongGprNeedsPadding()) { PushGpr(0); gpr_index_--; } if (kRegistersNeededForLong == 1) { PushGpr(static_cast<uintptr_t>(val)); } else { PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); } gpr_index_ -= kRegistersNeededForLong; } else { if (LongStackNeedsPadding()) { PushStack(0); stack_entries_++; } if (kRegistersNeededForLong == 1) { PushStack(static_cast<uintptr_t>(val)); stack_entries_++; } else { PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); stack_entries_ += 2; } gpr_index_ = 0; } } bool HaveFloatFpr() const { return fpr_index_ > 0; } void AdvanceFloat(float val) { if (kNativeSoftFloatAbi) { AdvanceInt(bit_cast<uint32_t, float>(val)); } else { if (HaveFloatFpr()) { fpr_index_--; if (kRegistersNeededForDouble == 1) { if (kMultiFPRegistersWidened) { PushFpr8(bit_cast<uint64_t, double>(val)); } else { // No widening, just use the bits. PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val))); } } else { PushFpr4(val); } } else { stack_entries_++; if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) { // Need to widen before storing: Note the "double" in the template instantiation. // Note: We need to jump through those hoops to make the compiler happy. DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t)); PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val))); } else { PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val))); } fpr_index_ = 0; } } } bool HaveDoubleFpr() const { return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); } bool DoubleFprNeedsPadding() const { return kRegistersNeededForDouble > 1 && // only pad when using multiple registers kAlignDoubleOnStack && // and when it needs alignment (fpr_index_ & 1) == 1; // counter is odd, see constructor } bool DoubleStackNeedsPadding() const { return kRegistersNeededForDouble > 1 && // only pad when using multiple registers kAlignDoubleOnStack && // and when it needs 8B alignment (stack_entries_ & 1) == 1; // counter is odd } void AdvanceDouble(uint64_t val) { if (kNativeSoftFloatAbi) { AdvanceLong(val); } else { if (HaveDoubleFpr()) { if (DoubleFprNeedsPadding()) { PushFpr4(0); fpr_index_--; } PushFpr8(val); fpr_index_ -= kRegistersNeededForDouble; } else { if (DoubleStackNeedsPadding()) { PushStack(0); stack_entries_++; } if (kRegistersNeededForDouble == 1) { PushStack(static_cast<uintptr_t>(val)); stack_entries_++; } else { PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); stack_entries_ += 2; } fpr_index_ = 0; } } } uint32_t GetStackEntries() const { return stack_entries_; } uint32_t GetNumberOfUsedGprs() const { return kNumNativeGprArgs - gpr_index_; } uint32_t GetNumberOfUsedFprs() const { return kNumNativeFprArgs - fpr_index_; } private: void PushGpr(uintptr_t val) { delegate_->PushGpr(val); } void PushFpr4(float val) { delegate_->PushFpr4(val); } void PushFpr8(uint64_t val) { delegate_->PushFpr8(val); } void PushStack(uintptr_t val) { delegate_->PushStack(val); } uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) { return delegate_->PushHandle(ref); } uint32_t gpr_index_; // Number of free GPRs uint32_t fpr_index_; // Number of free FPRs uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not // extended T* const delegate_; // What Push implementation gets called }; // Computes the sizes of register stacks and call stack area. Handling of references can be extended // in subclasses. // // To handle native pointers, use "L" in the shorty for an object reference, which simulates // them with handles. class ComputeNativeCallFrameSize { public: ComputeNativeCallFrameSize() : num_stack_entries_(0) {} virtual ~ComputeNativeCallFrameSize() {} uint32_t GetStackSize() const { return num_stack_entries_ * sizeof(uintptr_t); } uint8_t* LayoutCallStack(uint8_t* sp8) const { sp8 -= GetStackSize(); // Align by kStackAlignment. sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); return sp8; } uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) const { // Assumption is OK right now, as we have soft-float arm size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs; sp8 -= fregs * sizeof(uintptr_t); *start_fpr = reinterpret_cast<uint32_t*>(sp8); size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs; sp8 -= iregs * sizeof(uintptr_t); *start_gpr = reinterpret_cast<uintptr_t*>(sp8); return sp8; } uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr) const { // Native call stack. sp8 = LayoutCallStack(sp8); *start_stack = reinterpret_cast<uintptr_t*>(sp8); // Put fprs and gprs below. sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr); // Return the new bottom. return sp8; } virtual void WalkHeader( BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { } void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) { BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this); WalkHeader(&sm); for (uint32_t i = 1; i < shorty_len; ++i) { Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); switch (cur_type_) { case Primitive::kPrimNot: // TODO: fix abuse of mirror types. sm.AdvanceHandleScope( reinterpret_cast<mirror::Object*>(0x12345678)); break; case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: sm.AdvanceInt(0); break; case Primitive::kPrimFloat: sm.AdvanceFloat(0); break; case Primitive::kPrimDouble: sm.AdvanceDouble(0); break; case Primitive::kPrimLong: sm.AdvanceLong(0); break; default: LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; UNREACHABLE(); } } num_stack_entries_ = sm.GetStackEntries(); } void PushGpr(uintptr_t /* val */) { // not optimizing registers, yet } void PushFpr4(float /* val */) { // not optimizing registers, yet } void PushFpr8(uint64_t /* val */) { // not optimizing registers, yet } void PushStack(uintptr_t /* val */) { // counting is already done in the superclass } virtual uintptr_t PushHandle(mirror::Object* /* ptr */) { return reinterpret_cast<uintptr_t>(nullptr); } protected: uint32_t num_stack_entries_; }; class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize { public: explicit ComputeGenericJniFrameSize(bool critical_native) : num_handle_scope_references_(0), critical_native_(critical_native) {} // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs // is at *m = sp. Will update to point to the bottom of the save frame. // // Note: assumes ComputeAll() has been run before. void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* method = **m; DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize); uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); // First, fix up the layout of the callee-save frame. // We have to squeeze in the HandleScope, and relocate the method pointer. // "Free" the slot for the method. sp8 += sizeof(void*); // In the callee-save frame we use a full pointer. // Under the callee saves put handle scope and new method stack reference. size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*); sp8 -= scope_and_method; // Align by kStackAlignment. sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); uint8_t* sp8_table = sp8 + sizeof(ArtMethod*); *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(), num_handle_scope_references_); // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. uint8_t* method_pointer = sp8; auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer); *new_method_ref = method; *m = new_method_ref; } // Adds space for the cookie. Note: may leave stack unaligned. void LayoutCookie(uint8_t** sp) const { // Reference cookie and padding *sp -= 8; } // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie. // Returns the new bottom. Note: this may be unaligned. uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope) REQUIRES_SHARED(Locks::mutator_lock_) { // First, fix up the layout of the callee-save frame. // We have to squeeze in the HandleScope, and relocate the method pointer. LayoutCalleeSaveFrame(self, m, sp, handle_scope); // The bottom of the callee-save frame is now where the method is, *m. uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m); // Add space for cookie. LayoutCookie(&sp8); return sp8; } // WARNING: After this, *sp won't be pointing to the method anymore! uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len, HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr) REQUIRES_SHARED(Locks::mutator_lock_) { Walk(shorty, shorty_len); // JNI part. uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope); sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr); // Return the new bottom. return sp8; } uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE; // Add JNIEnv* and jobj/jclass before the shorty-derived elements. void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_); private: uint32_t num_handle_scope_references_; const bool critical_native_; }; uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) { num_handle_scope_references_++; return reinterpret_cast<uintptr_t>(nullptr); } void ComputeGenericJniFrameSize::WalkHeader( BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) { // First 2 parameters are always excluded for @CriticalNative. if (UNLIKELY(critical_native_)) { return; } // JNIEnv sm->AdvancePointer(nullptr); // Class object or this as first argument sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); } // Class to push values to three separate regions. Used to fill the native call part. Adheres to // the template requirements of BuildGenericJniFrameStateMachine. class FillNativeCall { public: FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) : cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {} virtual ~FillNativeCall() {} void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) { cur_gpr_reg_ = gpr_regs; cur_fpr_reg_ = fpr_regs; cur_stack_arg_ = stack_args; } void PushGpr(uintptr_t val) { *cur_gpr_reg_ = val; cur_gpr_reg_++; } void PushFpr4(float val) { *cur_fpr_reg_ = val; cur_fpr_reg_++; } void PushFpr8(uint64_t val) { uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); *tmp = val; cur_fpr_reg_ += 2; } void PushStack(uintptr_t val) { *cur_stack_arg_ = val; cur_stack_arg_++; } virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) { LOG(FATAL) << "(Non-JNI) Native call does not use handles."; UNREACHABLE(); } private: uintptr_t* cur_gpr_reg_; uint32_t* cur_fpr_reg_; uintptr_t* cur_stack_arg_; }; // Visits arguments on the stack placing them into a region lower down the stack for the benefit // of transitioning into native code. class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { public: BuildGenericJniFrameVisitor(Thread* self, bool is_static, bool critical_native, const char* shorty, uint32_t shorty_len, ArtMethod*** sp) : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native), sm_(&jni_call_) { ComputeGenericJniFrameSize fsc(critical_native); uintptr_t* start_gpr_reg; uint32_t* start_fpr_reg; uintptr_t* start_stack_arg; bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len, &handle_scope_, &start_stack_arg, &start_gpr_reg, &start_fpr_reg); jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_); // First 2 parameters are always excluded for CriticalNative methods. if (LIKELY(!critical_native)) { // jni environment is always first argument sm_.AdvancePointer(self->GetJniEnv()); if (is_static) { sm_.AdvanceHandleScope((**sp)->GetDeclaringClass()); } // else "this" reference is already handled by QuickArgumentVisitor. } } void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); StackReference<mirror::Object>* GetFirstHandleScopeEntry() { return handle_scope_->GetHandle(0).GetReference(); } jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) { return handle_scope_->GetHandle(0).ToJObject(); } void* GetBottomOfUsedArea() const { return bottom_of_used_area_; } private: // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall. class FillJniCall FINAL : public FillNativeCall { public: FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* handle_scope, bool critical_native) : FillNativeCall(gpr_regs, fpr_regs, stack_args), handle_scope_(handle_scope), cur_entry_(0), critical_native_(critical_native) {} uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_); void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) { FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args); handle_scope_ = scope; cur_entry_ = 0U; } void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) { // Initialize padding entries. size_t expected_slots = handle_scope_->NumberOfReferences(); while (cur_entry_ < expected_slots) { handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr); } if (!critical_native_) { // Non-critical natives have at least the self class (jclass) or this (jobject). DCHECK_NE(cur_entry_, 0U); } } bool CriticalNative() const { return critical_native_; } private: HandleScope* handle_scope_; size_t cur_entry_; const bool critical_native_; }; HandleScope* handle_scope_; FillJniCall jni_call_; void* bottom_of_used_area_; BuildNativeCallFrameStateMachine<FillJniCall> sm_; DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); }; uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) { uintptr_t tmp; MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_); h.Assign(ref); tmp = reinterpret_cast<uintptr_t>(h.ToJObject()); cur_entry_++; return tmp; } void BuildGenericJniFrameVisitor::Visit() { Primitive::Type type = GetParamPrimitiveType(); switch (type) { case Primitive::kPrimLong: { jlong long_arg; if (IsSplitLongOrDouble()) { long_arg = ReadSplitLongParam(); } else { long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); } sm_.AdvanceLong(long_arg); break; } case Primitive::kPrimDouble: { uint64_t double_arg; if (IsSplitLongOrDouble()) { // Read into union so that we don't case to a double. double_arg = ReadSplitLongParam(); } else { double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); } sm_.AdvanceDouble(double_arg); break; } case Primitive::kPrimNot: { StackReference<mirror::Object>* stack_ref = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); break; } case Primitive::kPrimFloat: sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); break; case Primitive::kPrimBoolean: // Fall-through. case Primitive::kPrimByte: // Fall-through. case Primitive::kPrimChar: // Fall-through. case Primitive::kPrimShort: // Fall-through. case Primitive::kPrimInt: // Fall-through. sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); break; case Primitive::kPrimVoid: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { // Clear out rest of the scope. jni_call_.ResetRemainingScopeSlots(); if (!jni_call_.CriticalNative()) { // Install HandleScope. self->PushHandleScope(handle_scope_); } } #if defined(__arm__) || defined(__aarch64__) extern "C" const void* artFindNativeMethod(); #else extern "C" const void* artFindNativeMethod(Thread* self); #endif static uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, bool fast_native ATTRIBUTE_UNUSED, jobject l, jobject lock) { // TODO: add entrypoints for @FastNative returning objects. if (lock != nullptr) { return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); } else { return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); } } static void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, bool fast_native, jobject lock) { if (lock != nullptr) { JniMethodEndSynchronized(cookie, lock, self); // Ignore "fast_native" here because synchronized functions aren't very fast. } else { if (UNLIKELY(fast_native)) { JniMethodFastEnd(cookie, self); } else { JniMethodEnd(cookie, self); } } } /* * Initializes an alloca region assumed to be directly below sp for a native call: * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. * The final element on the stack is a pointer to the native code. * * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. * We need to fix this, as the handle scope needs to go into the callee-save frame. * * The return of this function denotes: * 1) How many bytes of the alloca can be released, if the value is non-negative. * 2) An error, if the value is negative. */ extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* called = *sp; DCHECK(called->IsNative()) << called->PrettyMethod(true); // Fix up a callee-save frame at the bottom of the stack (at `*sp`, // above the alloca region) while we check for optimization // annotations, thus allowing stack walking until the completion of // the JNI frame creation. // // Note however that the Generic JNI trampoline does not expect // exception being thrown at that stage. *sp = Runtime::Current()->GetCalleeSaveMethod(Runtime::CalleeSaveType::kSaveRefsAndArgs); self->SetTopOfStack(sp); uint32_t shorty_len = 0; const char* shorty = called->GetShorty(&shorty_len); // Optimization annotations lookup does not try to resolve classes, // as this may throw an exception, which is not supported by the // Generic JNI trampoline at this stage; instead, method's // annotations' classes are looked up in the bootstrap class // loader's resolved types (which won't trigger an exception). bool critical_native = called->IsAnnotatedWithCriticalNative(); // ArtMethod::IsAnnotatedWithCriticalNative should not throw // an exception; clear it if it happened anyway. // TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()). if (self->IsExceptionPending()) { self->ClearException(); } bool fast_native = called->IsAnnotatedWithFastNative(); // ArtMethod::IsAnnotatedWithFastNative should not throw // an exception; clear it if it happened anyway. // TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()). if (self->IsExceptionPending()) { self->ClearException(); } bool normal_native = !critical_native && !fast_native; // Restore the initial ArtMethod pointer at `*sp`. *sp = called; // Run the visitor and update sp. BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), critical_native, shorty, shorty_len, &sp); { ScopedAssertNoThreadSuspension sants(__FUNCTION__); visitor.VisitArguments(); // FinalizeHandleScope pushes the handle scope on the thread. visitor.FinalizeHandleScope(self); } // Fix up managed-stack things in Thread. self->SetTopOfStack(sp); self->VerifyStack(); uint32_t cookie; uint32_t* sp32; // Skip calling JniMethodStart for @CriticalNative. if (LIKELY(!critical_native)) { // Start JNI, save the cookie. if (called->IsSynchronized()) { DCHECK(normal_native) << " @FastNative and synchronize is not supported"; cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); if (self->IsExceptionPending()) { self->PopHandleScope(); // A negative value denotes an error. return GetTwoWordFailureValue(); } } else { if (fast_native) { cookie = JniMethodFastStart(self); } else { DCHECK(normal_native); cookie = JniMethodStart(self); } } sp32 = reinterpret_cast<uint32_t*>(sp); *(sp32 - 1) = cookie; } // Retrieve the stored native code. void const* nativeCode = called->GetEntryPointFromJni(); // There are two cases for the content of nativeCode: // 1) Pointer to the native function. // 2) Pointer to the trampoline for native code binding. // In the second case, we need to execute the binding and continue with the actual native function // pointer. DCHECK(nativeCode != nullptr); if (nativeCode == GetJniDlsymLookupStub()) { #if defined(__arm__) || defined(__aarch64__) nativeCode = artFindNativeMethod(); #else nativeCode = artFindNativeMethod(self); #endif if (nativeCode == nullptr) { DCHECK(self->IsExceptionPending()); // There should be an exception pending now. // @CriticalNative calls do not need to call back into JniMethodEnd. if (LIKELY(!critical_native)) { // End JNI, as the assembly will move to deliver the exception. jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; if (shorty[0] == 'L') { artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock); } else { artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock); } } return GetTwoWordFailureValue(); } // Note that the native code pointer will be automatically set by artFindNativeMethod(). } #if defined(__mips__) && !defined(__LP64__) // On MIPS32 if the first two arguments are floating-point, we need to know their types // so that art_quick_generic_jni_trampoline can correctly extract them from the stack // and load into floating-point registers. // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU // view): // (1) // | DOUBLE | DOUBLE | other args, if any // | F12 | F13 | F14 | F15 | // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16 // (2) // | DOUBLE | FLOAT | (PAD) | other args, if any // | F12 | F13 | F14 | | // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16 // (3) // | FLOAT | (PAD) | DOUBLE | other args, if any // | F12 | | F14 | F15 | // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16 // (4) // | FLOAT | FLOAT | other args, if any // | F12 | F14 | // | SP+0 | SP+4 | SP+8 // As you can see, only the last case (4) is special. In all others we can just // load F12/F13 and F14/F15 in the same manner. // Set bit 0 of the native code address to 1 in this case (valid code addresses // are always a multiple of 4 on MIPS32, so we have 2 spare bits available). if (nativeCode != nullptr && shorty != nullptr && shorty_len >= 3 && shorty[1] == 'F' && shorty[2] == 'F') { nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1); } #endif // Return native code addr(lo) and bottom of alloca address(hi). return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()), reinterpret_cast<uintptr_t>(nativeCode)); } // Defined in quick_jni_entrypoints.cc. extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie, jvalue result, uint64_t result_f, ArtMethod* called, HandleScope* handle_scope); /* * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and * unlocking. */ extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f) { // We're here just back from a native call. We don't have the shared mutator lock at this point // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing // anything that requires a mutator lock before that would cause problems as GC may have the // exclusive mutator lock and may be moving objects, etc. ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame(); uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); ArtMethod* called = *sp; uint32_t cookie = *(sp32 - 1); HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp)); return GenericJniMethodEnd(self, cookie, result, result_f, called, table); } // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value // for the method pointer. // // It is valid to use this, as at the usage points here (returns from C functions) we are assuming // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations). template<InvokeType type, bool access_check> static TwoWordReturn artInvokeCommon(uint32_t method_idx, ObjPtr<mirror::Object> this_object, Thread* self, ArtMethod** sp) { ScopedQuickEntrypointChecks sqec(self); DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs)); ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type); if (UNLIKELY(method == nullptr)) { const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); uint32_t shorty_len; const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); { // Remember the args in case a GC happens in FindMethodFromCode. ScopedObjectAccessUnchecked soa(self->GetJniEnv()); RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); visitor.VisitArguments(); method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method, self); visitor.FixupReferences(); } if (UNLIKELY(method == nullptr)) { CHECK(self->IsExceptionPending()); return GetTwoWordFailureValue(); // Failure. } } DCHECK(!self->IsExceptionPending()); const void* code = method->GetEntryPointFromQuickCompiledCode(); // When we return, the caller will branch to this address, so it had better not be 0! DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod() << " location: " << method->GetDexFile()->GetLocation(); return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), reinterpret_cast<uintptr_t>(method)); } // Explicit artInvokeCommon template function declarations to please analysis tool. #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ template REQUIRES_SHARED(Locks::mutator_lock_) \ TwoWordReturn artInvokeCommon<type, access_check>( \ uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp) EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL // See comments in runtime_support_asm.S extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck( uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp); } extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck( uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp); } extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck( uint32_t method_idx, mirror::Object* this_object ATTRIBUTE_UNUSED, Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { // For static, this_object is not required and may be random garbage. Don't pass it down so that // it doesn't cause ObjPtr alignment failure check. return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp); } extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck( uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp); } extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck( uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp); } // Determine target of interface dispatch. The interface method and this object are known non-null. // The interface method is the method returned by the dex cache in the conflict trampoline. extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method, mirror::Object* raw_this_object, Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(interface_method != nullptr); ObjPtr<mirror::Object> this_object(raw_this_object); ScopedQuickEntrypointChecks sqec(self); StackHandleScope<1> hs(self); Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass())); ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); ArtMethod* method = nullptr; ImTable* imt = cls->GetImt(kRuntimePointerSize); if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { // If the interface method is already resolved, look whether we have a match in the // ImtConflictTable. ArtMethod* conflict_method = imt->Get(ImTable::GetImtIndex(interface_method), kRuntimePointerSize); if (LIKELY(conflict_method->IsRuntimeMethod())) { ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize); DCHECK(current_table != nullptr); method = current_table->Lookup(interface_method, kRuntimePointerSize); } else { // It seems we aren't really a conflict method! method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize); } if (method != nullptr) { return GetTwoWordSuccessValue( reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()), reinterpret_cast<uintptr_t>(method)); } // No match, use the IfTable. method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize); if (UNLIKELY(method == nullptr)) { ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch( interface_method, this_object, caller_method); return GetTwoWordFailureValue(); // Failure. } } else { // The interface method is unresolved, so look it up in the dex file of the caller. DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod()); // Fetch the dex_method_idx of the target interface method from the caller. uint32_t dex_method_idx; uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); const DexFile::CodeItem* code_item = caller_method->GetCodeItem(); DCHECK_LT(dex_pc, code_item->insns_size_in_code_units_); const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]); Instruction::Code instr_code = instr->Opcode(); DCHECK(instr_code == Instruction::INVOKE_INTERFACE || instr_code == Instruction::INVOKE_INTERFACE_RANGE) << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr); if (instr_code == Instruction::INVOKE_INTERFACE) { dex_method_idx = instr->VRegB_35c(); } else { DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); dex_method_idx = instr->VRegB_3rc(); } const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache() ->GetDexFile(); uint32_t shorty_len; const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len); { // Remember the args in case a GC happens in FindMethodFromCode. ScopedObjectAccessUnchecked soa(self->GetJniEnv()); RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); visitor.VisitArguments(); method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method, self); visitor.FixupReferences(); } if (UNLIKELY(method == nullptr)) { CHECK(self->IsExceptionPending()); return GetTwoWordFailureValue(); // Failure. } interface_method = caller_method->GetDexCacheResolvedMethod(dex_method_idx, kRuntimePointerSize); DCHECK(!interface_method->IsRuntimeMethod()); } // We arrive here if we have found an implementation, and it is not in the ImtConflictTable. // We create a new table with the new pair { interface_method, method }. uint32_t imt_index = ImTable::GetImtIndex(interface_method); ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize); if (conflict_method->IsRuntimeMethod()) { ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable( cls.Get(), conflict_method, interface_method, method, /*force_new_conflict_method*/false); if (new_conflict_method != conflict_method) { // Update the IMT if we create a new conflict method. No fence needed here, as the // data is consistent. imt->Set(imt_index, new_conflict_method, kRuntimePointerSize); } } const void* code = method->GetEntryPointFromQuickCompiledCode(); // When we return, the caller will branch to this address, so it had better not be 0! DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod() << " location: " << method->GetDexFile()->GetLocation(); return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), reinterpret_cast<uintptr_t>(method)); } // Returns shorty type so the caller can determine how to put |result| // into expected registers. The shorty type is static so the compiler // could call different flavors of this code path depending on the // shorty type though this would require different entry points for // each type. extern "C" uintptr_t artInvokePolymorphic( JValue* result, mirror::Object* raw_method_handle, Thread* self, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedQuickEntrypointChecks sqec(self); DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs)); // Start new JNI local reference state JNIEnvExt* env = self->GetJniEnv(); ScopedObjectAccessUnchecked soa(env); ScopedJniEnvLocalRefState env_state(env); const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe."); // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC. ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); const DexFile::CodeItem* code = caller_method->GetCodeItem(); const Instruction* inst = Instruction::At(&code->insns_[dex_pc]); DCHECK(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC || inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE); const DexFile* dex_file = caller_method->GetDexFile(); const uint32_t proto_idx = inst->VRegH(); const char* shorty = dex_file->GetShorty(proto_idx); const size_t shorty_length = strlen(shorty); static const bool kMethodIsStatic = false; // invoke() and invokeExact() are not static. RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa); gc_visitor.VisitArguments(); // Wrap raw_method_handle in a Handle for safety. StackHandleScope<5> hs(self); Handle<mirror::MethodHandle> method_handle( hs.NewHandle(ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(raw_method_handle)))); raw_method_handle = nullptr; self->EndAssertNoThreadSuspension(old_cause); // Resolve method - it's either MethodHandle.invoke() or MethodHandle.invokeExact(). ClassLinker* linker = Runtime::Current()->GetClassLinker(); ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::kForceICCECheck>(self, inst->VRegB(), caller_method, kVirtual); DCHECK((resolved_method == jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) || (resolved_method == jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke))); if (UNLIKELY(method_handle.IsNull())) { ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual); return static_cast<uintptr_t>('V'); } Handle<mirror::Class> caller_class(hs.NewHandle(caller_method->GetDeclaringClass())); Handle<mirror::MethodType> method_type(hs.NewHandle(linker->ResolveMethodType( *dex_file, proto_idx, hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()), hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader())))); // This implies we couldn't resolve one or more types in this method handle. if (UNLIKELY(method_type.IsNull())) { CHECK(self->IsExceptionPending()); return static_cast<uintptr_t>('V'); } DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst->VRegA()); DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic); // Fix references before constructing the shadow frame. gc_visitor.FixupReferences(); // Construct shadow frame placing arguments consecutively from |first_arg|. const bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE); const size_t num_vregs = is_range ? inst->VRegA_4rcc() : inst->VRegA_45cc(); const size_t first_arg = 0; ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc); ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); ScopedStackedShadowFramePusher frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction); BuildQuickShadowFrameVisitor shadow_frame_builder(sp, kMethodIsStatic, shorty, strlen(shorty), shadow_frame, first_arg); shadow_frame_builder.VisitArguments(); // Push a transition back into managed code onto the linked list in thread. ManagedStack fragment; self->PushManagedStackFragment(&fragment); // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in // consecutive order. uint32_t unused_args[Instruction::kMaxVarArgRegs] = {}; uint32_t first_callee_arg = first_arg + 1; if (!DoInvokePolymorphic<true /* is_range */>(self, resolved_method, *shadow_frame, method_handle, method_type, unused_args, first_callee_arg, result)) { DCHECK(self->IsExceptionPending()); } // Pop transition record. self->PopManagedStackFragment(fragment); return static_cast<uintptr_t>(shorty[0]); } } // namespace art