// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/code-factory.h"
#include "src/codegen.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id) {
// ----------- S t a t e -------------
// -- rax : number of arguments excluding receiver
// -- rdi : target
// -- rdx : new.target
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -- ...
// -- rsp[8 * argc] : first argument
// -- rsp[8 * (argc + 1)] : receiver
// -----------------------------------
__ AssertFunction(rdi);
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Unconditionally insert the target and new target as extra arguments. They
// will be used by stack frame iterators when constructing the stack trace.
const int num_extra_args = 2;
__ PopReturnAddressTo(kScratchRegister);
__ Push(rdi);
__ Push(rdx);
__ PushReturnAddressFrom(kScratchRegister);
// JumpToExternalReference expects rax to contain the number of arguments
// including the receiver and the extra arguments.
__ addp(rax, Immediate(num_extra_args + 1));
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ movp(kScratchRegister,
FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(kScratchRegister,
FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset));
__ leap(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize));
__ jmp(kScratchRegister);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- rax : argument count (preserved for callee)
// -- rdx : new target (preserved for callee)
// -- rdi : target function (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the number of arguments to the callee.
__ Integer32ToSmi(rax, rax);
__ Push(rax);
// Push a copy of the target function and the new target.
__ Push(rdi);
__ Push(rdx);
// Function is also the parameter to the runtime call.
__ Push(rdi);
__ CallRuntime(function_id, 1);
__ movp(rbx, rax);
// Restore target function and new target.
__ Pop(rdx);
__ Pop(rdi);
__ Pop(rax);
__ SmiToInteger32(rax, rax);
}
__ leap(rbx, FieldOperand(rbx, Code::kHeaderSize));
__ jmp(rbx);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool create_implicit_receiver,
bool check_derived_construct) {
// ----------- S t a t e -------------
// -- rax: number of arguments
// -- rsi: context
// -- rdi: constructor function
// -- rbx: allocation site or undefined
// -- rdx: new target
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ AssertUndefinedOrAllocationSite(rbx);
__ Push(rsi);
__ Push(rbx);
__ Integer32ToSmi(rcx, rax);
__ Push(rcx);
if (create_implicit_receiver) {
// Allocate the new receiver object.
__ Push(rdi);
__ Push(rdx);
FastNewObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ movp(rbx, rax);
__ Pop(rdx);
__ Pop(rdi);
// ----------- S t a t e -------------
// -- rdi: constructor function
// -- rbx: newly allocated object
// -- rdx: new target
// -----------------------------------
// Retrieve smi-tagged arguments count from the stack.
__ SmiToInteger32(rax, Operand(rsp, 0 * kPointerSize));
}
if (create_implicit_receiver) {
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(rbx);
__ Push(rbx);
} else {
__ PushRoot(Heap::kTheHoleValueRootIndex);
}
// Set up pointer to last argument.
__ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movp(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ Push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decp(rcx);
__ j(greater_equal, &loop);
// Call the function.
ParameterCount actual(rax);
__ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
// Store offset of return address for deoptimizer.
if (create_implicit_receiver && !is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
__ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
if (create_implicit_receiver) {
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(rax, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
__ j(above_equal, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ movp(rax, Operand(rsp, 0));
// Restore the arguments count and leave the construct frame. The
// arguments count is stored below the receiver.
__ bind(&exit);
__ movp(rbx, Operand(rsp, 1 * kPointerSize));
} else {
__ movp(rbx, Operand(rsp, 0));
}
// Leave construct frame.
}
// ES6 9.2.2. Step 13+
// Check that the result is not a Smi, indicating that the constructor result
// from a derived class is neither undefined nor an Object.
if (check_derived_construct) {
Label dont_throw;
__ JumpIfNotSmi(rax, &dont_throw);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject);
}
__ bind(&dont_throw);
}
// Remove caller arguments from the stack and return.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
if (create_implicit_receiver) {
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->constructed_objects(), 1);
}
__ ret(0);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStubForDerived(
MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, true);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
enum IsTagged { kRaxIsSmiTagged, kRaxIsUntaggedInt };
// Clobbers rcx, r11, kScratchRegister; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm,
IsTagged rax_is_tagged) {
// rax : the number of items to be pushed to the stack
//
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movp(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subp(rcx, kScratchRegister);
// Make r11 the space we need for the array when it is unrolled onto the
// stack.
if (rax_is_tagged == kRaxIsSmiTagged) {
__ PositiveSmiTimesPowerOfTwoToInteger64(r11, rax, kPointerSizeLog2);
} else {
DCHECK(rax_is_tagged == kRaxIsUntaggedInt);
__ movp(r11, rax);
__ shlq(r11, Immediate(kPointerSizeLog2));
}
// Check if the arguments will overflow the stack.
__ cmpp(rcx, r11);
__ j(greater, &okay); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Expects five C++ function parameters.
// - Object* new_target
// - JSFunction* function
// - Object* receiver
// - int argc
// - Object*** argv
// (see Handle::Invoke in execution.cc).
// Open a C++ scope for the FrameScope.
{
// Platform specific argument handling. After this, the stack contains
// an internal frame and the pushed function and receiver, and
// register rax and rbx holds the argument count and argument array,
// while rdi holds the function pointer, rsi the context, and rdx the
// new.target.
#ifdef _WIN64
// MSVC parameters in:
// rcx : new_target
// rdx : function
// r8 : receiver
// r9 : argc
// [rsp+0x20] : argv
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ movp(rsi, masm->ExternalOperand(context_address));
// Push the function and the receiver onto the stack.
__ Push(rdx);
__ Push(r8);
// Load the number of arguments and setup pointer to the arguments.
__ movp(rax, r9);
// Load the previous frame pointer to access C argument on stack
__ movp(kScratchRegister, Operand(rbp, 0));
__ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
// Load the function pointer into rdi.
__ movp(rdi, rdx);
// Load the new.target into rdx.
__ movp(rdx, rcx);
#else // _WIN64
// GCC parameters in:
// rdi : new_target
// rsi : function
// rdx : receiver
// rcx : argc
// r8 : argv
__ movp(r11, rdi);
__ movp(rdi, rsi);
// rdi : function
// r11 : new_target
// Clear the context before we push it when entering the internal frame.
__ Set(rsi, 0);
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ movp(rsi, masm->ExternalOperand(context_address));
// Push the function and receiver onto the stack.
__ Push(rdi);
__ Push(rdx);
// Load the number of arguments and setup pointer to the arguments.
__ movp(rax, rcx);
__ movp(rbx, r8);
// Load the new.target into rdx.
__ movp(rdx, r11);
#endif // _WIN64
// Current stack contents:
// [rsp + 2 * kPointerSize ... ] : Internal frame
// [rsp + kPointerSize] : function
// [rsp] : receiver
// Current register contents:
// rax : argc
// rbx : argv
// rsi : context
// rdi : function
// rdx : new.target
// Check if we have enough stack space to push all arguments.
// Expects argument count in rax. Clobbers rcx, r11.
Generate_CheckStackOverflow(masm, kRaxIsUntaggedInt);
// Copy arguments to the stack in a loop.
// Register rbx points to array of pointers to handle locations.
// Push the values of these handles.
Label loop, entry;
__ Set(rcx, 0); // Set loop variable to 0.
__ jmp(&entry, Label::kNear);
__ bind(&loop);
__ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ Push(Operand(kScratchRegister, 0)); // dereference handle
__ addp(rcx, Immediate(1));
__ bind(&entry);
__ cmpp(rcx, rax);
__ j(not_equal, &loop);
// Invoke the builtin code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the internal frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
}
// TODO(X64): Is argument correct? Is there a receiver to remove?
__ ret(1 * kPointerSize); // Remove receiver.
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the value to pass to the generator
// -- rbx : the JSGeneratorObject to resume
// -- rdx : the resume mode (tagged)
// -- rsp[0] : return address
// -----------------------------------
__ AssertGeneratorObject(rbx);
// Store input value into generator object.
__ movp(FieldOperand(rbx, JSGeneratorObject::kInputOrDebugPosOffset), rax);
__ RecordWriteField(rbx, JSGeneratorObject::kInputOrDebugPosOffset, rax, rcx,
kDontSaveFPRegs);
// Store resume mode into generator object.
__ movp(FieldOperand(rbx, JSGeneratorObject::kResumeModeOffset), rdx);
// Load suspended function and context.
__ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset));
__ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference last_step_action =
ExternalReference::debug_last_step_action_address(masm->isolate());
Operand last_step_action_operand = masm->ExternalOperand(last_step_action);
STATIC_ASSERT(StepFrame > StepIn);
__ cmpb(last_step_action_operand, Immediate(StepIn));
__ j(greater_equal, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
Operand debug_suspended_generator_operand =
masm->ExternalOperand(debug_suspended_generator);
__ cmpp(rbx, debug_suspended_generator_operand);
__ j(equal, &prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Pop return address.
__ PopReturnAddressTo(rax);
// Push receiver.
__ Push(FieldOperand(rbx, JSGeneratorObject::kReceiverOffset));
// ----------- S t a t e -------------
// -- rax : return address
// -- rbx : the JSGeneratorObject to resume
// -- rdx : the resume mode (tagged)
// -- rdi : generator function
// -- rsi : generator context
// -- rsp[0] : generator receiver
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ LoadSharedFunctionInfoSpecialField(
rcx, rcx, SharedFunctionInfo::kFormalParameterCountOffset);
{
Label done_loop, loop;
__ bind(&loop);
__ subl(rcx, Immediate(1));
__ j(carry, &done_loop, Label::kNear);
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ jmp(&loop);
__ bind(&done_loop);
}
// Dispatch on the kind of generator object.
Label old_generator;
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset));
__ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx);
__ j(not_equal, &old_generator);
// New-style (ignition/turbofan) generator object.
{
__ PushReturnAddressFrom(rax);
__ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ LoadSharedFunctionInfoSpecialField(
rax, rax, SharedFunctionInfo::kFormalParameterCountOffset);
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ movp(rdx, rbx);
__ jmp(FieldOperand(rdi, JSFunction::kCodeEntryOffset));
}
// Old-style (full-codegen) generator object.
__ bind(&old_generator);
{
// Enter a new JavaScript frame, and initialize its slots as they were when
// the generator was suspended.
FrameScope scope(masm, StackFrame::MANUAL);
__ PushReturnAddressFrom(rax); // Return address.
__ Push(rbp); // Caller's frame pointer.
__ Move(rbp, rsp);
__ Push(rsi); // Callee's context.
__ Push(rdi); // Callee's JS Function.
// Restore the operand stack.
__ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset));
__ SmiToInteger32(rax, FieldOperand(rsi, FixedArray::kLengthOffset));
{
Label done_loop, loop;
__ Set(rcx, 0);
__ bind(&loop);
__ cmpl(rcx, rax);
__ j(equal, &done_loop, Label::kNear);
__ Push(
FieldOperand(rsi, rcx, times_pointer_size, FixedArray::kHeaderSize));
__ addl(rcx, Immediate(1));
__ jmp(&loop);
__ bind(&done_loop);
}
// Reset operand stack so we don't leak.
__ LoadRoot(FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset),
Heap::kEmptyFixedArrayRootIndex);
// Restore context.
__ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset));
// Resume the generator function at the continuation.
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
__ SmiToInteger64(
rcx, FieldOperand(rbx, JSGeneratorObject::kContinuationOffset));
__ leap(rdx, FieldOperand(rdx, rcx, times_1, Code::kHeaderSize));
__ Move(FieldOperand(rbx, JSGeneratorObject::kContinuationOffset),
Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
__ movp(rax, rbx); // Continuation expects generator object in rax.
__ jmp(rdx);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rbx);
__ Push(rdx);
__ Push(rdi);
__ CallRuntime(Runtime::kDebugPrepareStepInIfStepping);
__ Pop(rdx);
__ Pop(rbx);
__ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rbx);
__ Push(rdx);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(rdx);
__ Pop(rbx);
__ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
Register scratch2) {
Register args_count = scratch1;
Register return_pc = scratch2;
// Get the arguments + receiver count.
__ movp(args_count,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ movl(args_count,
FieldOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ leave();
// Drop receiver + arguments.
__ PopReturnAddressTo(return_pc);
__ addp(rsp, args_count);
__ PushReturnAddressFrom(return_pc);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o rdi: the JS function object being called
// o rdx: the new target
// o rsi: our context
// o rbp: the caller's frame pointer
// o rsp: stack pointer (pointing to return address)
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ pushq(rbp); // Caller's frame pointer.
__ movp(rbp, rsp);
__ Push(rsi); // Callee's context.
__ Push(rdi); // Callee's JS function.
__ Push(rdx); // Callee's new target.
// Get the bytecode array from the function object (or from the DebugInfo if
// it is present) and load it into kInterpreterBytecodeArrayRegister.
__ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
Label load_debug_bytecode_array, bytecode_array_loaded;
DCHECK_EQ(Smi::FromInt(0), DebugInfo::uninitialized());
__ cmpp(FieldOperand(rax, SharedFunctionInfo::kDebugInfoOffset),
Immediate(0));
__ j(not_equal, &load_debug_bytecode_array);
__ movp(kInterpreterBytecodeArrayRegister,
FieldOperand(rax, SharedFunctionInfo::kFunctionDataOffset));
__ bind(&bytecode_array_loaded);
// Check function data field is actually a BytecodeArray object.
Label bytecode_array_not_present;
__ CompareRoot(kInterpreterBytecodeArrayRegister,
Heap::kUndefinedValueRootIndex);
__ j(equal, &bytecode_array_not_present);
if (FLAG_debug_code) {
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
rax);
__ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Load initial bytecode offset.
__ movp(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push bytecode array and Smi tagged bytecode offset.
__ Push(kInterpreterBytecodeArrayRegister);
__ Integer32ToSmi(rcx, kInterpreterBytecodeOffsetRegister);
__ Push(rcx);
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ movp(rdx, rsp);
__ subp(rdx, rcx);
__ CompareRoot(rdx, Heap::kRealStackLimitRootIndex);
__ j(above_equal, &ok, Label::kNear);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(always, &loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ Push(rdx);
// Continue loop if not done.
__ bind(&loop_check);
__ subp(rcx, Immediate(kPointerSize));
__ j(greater_equal, &loop_header, Label::kNear);
}
// Load accumulator and dispatch table into registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Dispatch to the first bytecode handler for the function.
__ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx,
times_pointer_size, 0));
__ call(rbx);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// The return value is in rax.
LeaveInterpreterFrame(masm, rbx, rcx);
__ ret(0);
// Load debug copy of the bytecode array.
__ bind(&load_debug_bytecode_array);
Register debug_info = kInterpreterBytecodeArrayRegister;
__ movp(debug_info, FieldOperand(rax, SharedFunctionInfo::kDebugInfoOffset));
__ movp(kInterpreterBytecodeArrayRegister,
FieldOperand(debug_info, DebugInfo::kAbstractCodeIndex));
__ jmp(&bytecode_array_loaded);
// If the bytecode array is no longer present, then the underlying function
// has been switched to a different kind of code and we heal the closure by
// switching the code entry field over to the new code object as well.
__ bind(&bytecode_array_not_present);
__ leave(); // Leave the frame so we can tail call.
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kCodeOffset));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ movp(FieldOperand(rdi, JSFunction::kCodeEntryOffset), rcx);
__ RecordWriteCodeEntryField(rdi, rcx, r15);
__ jmp(rcx);
}
void Builtins::Generate_InterpreterMarkBaselineOnReturn(MacroAssembler* masm) {
// Save the function and context for call to CompileBaseline.
__ movp(rdi, Operand(rbp, StandardFrameConstants::kFunctionOffset));
__ movp(kContextRegister,
Operand(rbp, StandardFrameConstants::kContextOffset));
// Leave the frame before recompiling for baseline so that we don't count as
// an activation on the stack.
LeaveInterpreterFrame(masm, rbx, rcx);
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
// Push return value.
__ Push(rax);
// Push function as argument and compile for baseline.
__ Push(rdi);
__ CallRuntime(Runtime::kCompileBaseline);
// Restore return value.
__ Pop(rax);
}
__ ret(0);
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
bool push_receiver) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rbx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
// Find the address of the last argument.
__ movp(rcx, rax);
if (push_receiver) {
__ addp(rcx, Immediate(1)); // Add one for receiver.
}
__ shlp(rcx, Immediate(kPointerSizeLog2));
__ negp(rcx);
__ addp(rcx, rbx);
// Push the arguments.
Label loop_header, loop_check;
__ j(always, &loop_check);
__ bind(&loop_header);
__ Push(Operand(rbx, 0));
__ subp(rbx, Immediate(kPointerSize));
__ bind(&loop_check);
__ cmpp(rbx, rcx);
__ j(greater, &loop_header, Label::kNear);
}
// static
void Builtins::Generate_InterpreterPushArgsAndCallImpl(
MacroAssembler* masm, TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rbx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- rdi : the target to call (can be any Object).
// -----------------------------------
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
Generate_InterpreterPushArgs(masm, true);
// Call the target.
__ PushReturnAddressFrom(kScratchRegister); // Re-push return address.
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
tail_call_mode),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (can be any Object)
// -- rbx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
// Push slot for the receiver to be constructed.
__ Push(Immediate(0));
Generate_InterpreterPushArgs(masm, false);
// Push return address in preparation for the tail-call.
__ PushReturnAddressFrom(kScratchRegister);
// Call the constructor (rax, rdx, rdi passed on).
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::FromInt(0));
__ Move(rbx, masm->isolate()->builtins()->InterpreterEntryTrampoline());
__ addp(rbx, Immediate(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
__ Push(rbx);
// Initialize dispatch table register.
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ movp(kInterpreterBytecodeArrayRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
rbx);
__ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ movp(kInterpreterBytecodeOffsetRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiToInteger32(kInterpreterBytecodeOffsetRegister,
kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx,
times_pointer_size, 0));
__ jmp(rbx);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argument count (preserved for callee)
// -- rdx : new target (preserved for callee)
// -- rdi : target function (preserved for callee)
// -----------------------------------
// First lookup code, maybe we don't need to compile!
Label gotta_call_runtime;
Label maybe_call_runtime;
Label try_shared;
Label loop_top, loop_bottom;
Register closure = rdi;
Register map = r8;
Register index = r9;
__ movp(map, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ movp(map, FieldOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset));
__ SmiToInteger32(index, FieldOperand(map, FixedArray::kLengthOffset));
__ cmpl(index, Immediate(2));
__ j(less, &gotta_call_runtime);
// Find literals.
// r14 : native context
// r9 : length / index
// r8 : optimized code map
// rdx : new target
// rdi : closure
Register native_context = r14;
__ movp(native_context, NativeContextOperand());
__ bind(&loop_top);
// Native context match?
Register temp = r11;
__ movp(temp, FieldOperand(map, index, times_pointer_size,
SharedFunctionInfo::kOffsetToPreviousContext));
__ movp(temp, FieldOperand(temp, WeakCell::kValueOffset));
__ cmpp(temp, native_context);
__ j(not_equal, &loop_bottom);
// OSR id set to none?
__ movp(temp, FieldOperand(map, index, times_pointer_size,
SharedFunctionInfo::kOffsetToPreviousOsrAstId));
__ SmiToInteger32(temp, temp);
const int bailout_id = BailoutId::None().ToInt();
__ cmpl(temp, Immediate(bailout_id));
__ j(not_equal, &loop_bottom);
// Literals available?
Label got_literals, maybe_cleared_weakcell;
__ movp(temp, FieldOperand(map, index, times_pointer_size,
SharedFunctionInfo::kOffsetToPreviousLiterals));
// temp contains either a WeakCell pointing to the literals array or the
// literals array directly.
STATIC_ASSERT(WeakCell::kValueOffset == FixedArray::kLengthOffset);
__ movp(r15, FieldOperand(temp, WeakCell::kValueOffset));
__ JumpIfSmi(r15, &maybe_cleared_weakcell);
// r15 is a pointer, therefore temp is a WeakCell pointing to a literals
// array.
__ movp(temp, FieldOperand(temp, WeakCell::kValueOffset));
__ jmp(&got_literals);
// r15 is a smi. If it's 0, then we are looking at a cleared WeakCell
// around the literals array, and we should visit the runtime. If it's > 0,
// then temp already contains the literals array.
__ bind(&maybe_cleared_weakcell);
__ cmpp(r15, Immediate(0));
__ j(equal, &gotta_call_runtime);
// Save the literals in the closure.
__ bind(&got_literals);
__ movp(FieldOperand(closure, JSFunction::kLiteralsOffset), temp);
__ movp(r15, index);
__ RecordWriteField(closure, JSFunction::kLiteralsOffset, temp, r15,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
// Code available?
Register entry = rcx;
__ movp(entry, FieldOperand(map, index, times_pointer_size,
SharedFunctionInfo::kOffsetToPreviousCachedCode));
__ movp(entry, FieldOperand(entry, WeakCell::kValueOffset));
__ JumpIfSmi(entry, &maybe_call_runtime);
// Found literals and code. Get them into the closure and return.
__ leap(entry, FieldOperand(entry, Code::kHeaderSize));
Label install_optimized_code_and_tailcall;
__ bind(&install_optimized_code_and_tailcall);
__ movp(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry);
__ RecordWriteCodeEntryField(closure, entry, r15);
// Link the closure into the optimized function list.
// rcx : code entry (entry)
// r14 : native context
// rdx : new target
// rdi : closure
__ movp(rbx,
ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
__ movp(FieldOperand(closure, JSFunction::kNextFunctionLinkOffset), rbx);
__ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, rbx, r15,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
const int function_list_offset =
Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
__ movp(ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST),
closure);
// Save closure before the write barrier.
__ movp(rbx, closure);
__ RecordWriteContextSlot(native_context, function_list_offset, closure, r15,
kDontSaveFPRegs);
__ movp(closure, rbx);
__ jmp(entry);
__ bind(&loop_bottom);
__ subl(index, Immediate(SharedFunctionInfo::kEntryLength));
__ cmpl(index, Immediate(1));
__ j(greater, &loop_top);
// We found neither literals nor code.
__ jmp(&gotta_call_runtime);
__ bind(&maybe_call_runtime);
// Last possibility. Check the context free optimized code map entry.
__ movp(entry, FieldOperand(map, FixedArray::kHeaderSize +
SharedFunctionInfo::kSharedCodeIndex));
__ movp(entry, FieldOperand(entry, WeakCell::kValueOffset));
__ JumpIfSmi(entry, &try_shared);
// Store code entry in the closure.
__ leap(entry, FieldOperand(entry, Code::kHeaderSize));
__ jmp(&install_optimized_code_and_tailcall);
__ bind(&try_shared);
// Is the full code valid?
__ movp(entry, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ movp(entry, FieldOperand(entry, SharedFunctionInfo::kCodeOffset));
__ movl(rbx, FieldOperand(entry, Code::kFlagsOffset));
__ andl(rbx, Immediate(Code::KindField::kMask));
__ shrl(rbx, Immediate(Code::KindField::kShift));
__ cmpl(rbx, Immediate(Code::BUILTIN));
__ j(equal, &gotta_call_runtime);
// Yes, install the full code.
__ leap(entry, FieldOperand(entry, Code::kHeaderSize));
__ movp(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry);
__ RecordWriteCodeEntryField(closure, entry, r15);
__ jmp(entry);
__ bind(&gotta_call_runtime);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
void Builtins::Generate_CompileBaseline(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm,
Runtime::kCompileOptimized_NotConcurrent);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Re-execute the code that was patched back to the young age when
// the stub returns.
__ subp(Operand(rsp, 0), Immediate(5));
__ Pushad();
__ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
__ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
{ // NOLINT
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
}
__ Popad();
__ ret(0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
__ Pushad();
__ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
__ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
__ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
{ // NOLINT
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
}
__ Popad();
// Perform prologue operations usually performed by the young code stub.
__ PopReturnAddressTo(kScratchRegister);
__ pushq(rbp); // Caller's frame pointer.
__ movp(rbp, rsp);
__ Push(rsi); // Callee's context.
__ Push(rdi); // Callee's JS Function.
__ PushReturnAddressFrom(kScratchRegister);
// Jump to point after the code-age stub.
__ ret(0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ Pushad();
__ CallRuntime(Runtime::kNotifyStubFailure, save_doubles);
__ Popad();
// Tear down internal frame.
}
__ DropUnderReturnAddress(1); // Ignore state offset
__ ret(0); // Return to IC Miss stub, continuation still on stack.
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the deoptimization type to the runtime system.
__ Push(Smi::FromInt(static_cast<int>(type)));
__ CallRuntime(Runtime::kNotifyDeoptimized);
// Tear down internal frame.
}
// Get the full codegen state from the stack and untag it.
__ SmiToInteger32(kScratchRegister, Operand(rsp, kPCOnStackSize));
// Switch on the state.
Label not_no_registers, not_tos_rax;
__ cmpp(kScratchRegister,
Immediate(static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS)));
__ j(not_equal, ¬_no_registers, Label::kNear);
__ ret(1 * kPointerSize); // Remove state.
__ bind(¬_no_registers);
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code());
__ movp(rax, Operand(rsp, kPCOnStackSize + kPointerSize));
__ cmpp(kScratchRegister,
Immediate(static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER)));
__ j(not_equal, ¬_tos_rax, Label::kNear);
__ ret(2 * kPointerSize); // Remove state, rax.
__ bind(¬_tos_rax);
__ Abort(kNoCasesLeft);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
// static
void Builtins::Generate_DatePrototype_GetField(MacroAssembler* masm,
int field_index) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : function
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[8] : receiver
// -----------------------------------
// 1. Load receiver into rax and check that it's actually a JSDate object.
Label receiver_not_date;
{
StackArgumentsAccessor args(rsp, 0);
__ movp(rax, args.GetReceiverOperand());
__ JumpIfSmi(rax, &receiver_not_date);
__ CmpObjectType(rax, JS_DATE_TYPE, rbx);
__ j(not_equal, &receiver_not_date);
}
// 2. Load the specified date field, falling back to the runtime as necessary.
if (field_index == JSDate::kDateValue) {
__ movp(rax, FieldOperand(rax, JSDate::kValueOffset));
} else {
if (field_index < JSDate::kFirstUncachedField) {
Label stamp_mismatch;
__ Load(rdx, ExternalReference::date_cache_stamp(masm->isolate()));
__ cmpp(rdx, FieldOperand(rax, JSDate::kCacheStampOffset));
__ j(not_equal, &stamp_mismatch, Label::kNear);
__ movp(rax, FieldOperand(
rax, JSDate::kValueOffset + field_index * kPointerSize));
__ ret(1 * kPointerSize);
__ bind(&stamp_mismatch);
}
FrameScope scope(masm, StackFrame::INTERNAL);
__ PrepareCallCFunction(2);
__ Move(arg_reg_1, rax);
__ Move(arg_reg_2, Smi::FromInt(field_index));
__ CallCFunction(
ExternalReference::get_date_field_function(masm->isolate()), 2);
}
__ ret(1 * kPointerSize);
// 3. Raise a TypeError if the receiver is not a date.
__ bind(&receiver_not_date);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Push(rbp);
__ Move(rbp, rsp);
__ Push(rsi);
__ Push(rdi);
__ Push(Immediate(0));
__ CallRuntime(Runtime::kThrowNotDateError);
}
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : argArray
// -- rsp[16] : thisArg
// -- rsp[24] : receiver
// -----------------------------------
// 1. Load receiver into rdi, argArray into rax (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label no_arg_array, no_this_arg;
StackArgumentsAccessor args(rsp, rax);
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ movp(rbx, rdx);
__ movp(rdi, args.GetReceiverOperand());
__ testp(rax, rax);
__ j(zero, &no_this_arg, Label::kNear);
{
__ movp(rdx, args.GetArgumentOperand(1));
__ cmpp(rax, Immediate(1));
__ j(equal, &no_arg_array, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(2));
__ bind(&no_arg_array);
}
__ bind(&no_this_arg);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ Push(rdx);
__ PushReturnAddressFrom(rcx);
__ movp(rax, rbx);
}
// ----------- S t a t e -------------
// -- rax : argArray
// -- rdi : receiver
// -- rsp[0] : return address
// -- rsp[8] : thisArg
// -----------------------------------
// 2. Make sure the receiver is actually callable.
Label receiver_not_callable;
__ JumpIfSmi(rdi, &receiver_not_callable, Label::kNear);
__ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset));
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsCallable));
__ j(zero, &receiver_not_callable, Label::kNear);
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(rax, Heap::kNullValueRootIndex, &no_arguments, Label::kNear);
__ JumpIfRoot(rax, Heap::kUndefinedValueRootIndex, &no_arguments,
Label::kNear);
// 4a. Apply the receiver to the given argArray (passing undefined for
// new.target).
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver. Since we did not create a frame for
// Function.prototype.apply() yet, we use a normal Call builtin here.
__ bind(&no_arguments);
{
__ Set(rax, 0);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// 4c. The receiver is not callable, throw an appropriate TypeError.
__ bind(&receiver_not_callable);
{
StackArgumentsAccessor args(rsp, 0);
__ movp(args.GetReceiverOperand(), rdi);
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// Stack Layout:
// rsp[0] : Return address
// rsp[8] : Argument n
// rsp[16] : Argument n-1
// ...
// rsp[8 * n] : Argument 1
// rsp[8 * (n + 1)] : Receiver (callable to call)
//
// rax contains the number of arguments, n, not counting the receiver.
//
// 1. Make sure we have at least one argument.
{
Label done;
__ testp(rax, rax);
__ j(not_zero, &done, Label::kNear);
__ PopReturnAddressTo(rbx);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ PushReturnAddressFrom(rbx);
__ incp(rax);
__ bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
{
StackArgumentsAccessor args(rsp, rax);
__ movp(rdi, args.GetReceiverOperand());
}
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
{
Label loop;
__ movp(rcx, rax);
StackArgumentsAccessor args(rsp, rcx);
__ bind(&loop);
__ movp(rbx, args.GetArgumentOperand(1));
__ movp(args.GetArgumentOperand(0), rbx);
__ decp(rcx);
__ j(not_zero, &loop); // While non-zero.
__ DropUnderReturnAddress(1, rbx); // Drop one slot under return address.
__ decp(rax); // One fewer argument (first argument is new receiver).
}
// 4. Call the callable.
// Since we did not create a frame for Function.prototype.call() yet,
// we use a normal Call builtin here.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : argumentsList
// -- rsp[16] : thisArgument
// -- rsp[24] : target
// -- rsp[32] : receiver
// -----------------------------------
// 1. Load target into rdi (if present), argumentsList into rax (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label done;
StackArgumentsAccessor args(rsp, rax);
__ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
__ movp(rdx, rdi);
__ movp(rbx, rdi);
__ cmpp(rax, Immediate(1));
__ j(below, &done, Label::kNear);
__ movp(rdi, args.GetArgumentOperand(1)); // target
__ j(equal, &done, Label::kNear);
__ movp(rdx, args.GetArgumentOperand(2)); // thisArgument
__ cmpp(rax, Immediate(3));
__ j(below, &done, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(3)); // argumentsList
__ bind(&done);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ Push(rdx);
__ PushReturnAddressFrom(rcx);
__ movp(rax, rbx);
}
// ----------- S t a t e -------------
// -- rax : argumentsList
// -- rdi : target
// -- rsp[0] : return address
// -- rsp[8] : thisArgument
// -----------------------------------
// 2. Make sure the target is actually callable.
Label target_not_callable;
__ JumpIfSmi(rdi, &target_not_callable, Label::kNear);
__ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset));
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsCallable));
__ j(zero, &target_not_callable, Label::kNear);
// 3a. Apply the target to the given argumentsList (passing undefined for
// new.target).
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 3b. The target is not callable, throw an appropriate TypeError.
__ bind(&target_not_callable);
{
StackArgumentsAccessor args(rsp, 0);
__ movp(args.GetReceiverOperand(), rdi);
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : new.target (optional)
// -- rsp[16] : argumentsList
// -- rsp[24] : target
// -- rsp[32] : receiver
// -----------------------------------
// 1. Load target into rdi (if present), argumentsList into rax (if present),
// new.target into rdx (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label done;
StackArgumentsAccessor args(rsp, rax);
__ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
__ movp(rdx, rdi);
__ movp(rbx, rdi);
__ cmpp(rax, Immediate(1));
__ j(below, &done, Label::kNear);
__ movp(rdi, args.GetArgumentOperand(1)); // target
__ movp(rdx, rdi); // new.target defaults to target
__ j(equal, &done, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(2)); // argumentsList
__ cmpp(rax, Immediate(3));
__ j(below, &done, Label::kNear);
__ movp(rdx, args.GetArgumentOperand(3)); // new.target
__ bind(&done);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ PushReturnAddressFrom(rcx);
__ movp(rax, rbx);
}
// ----------- S t a t e -------------
// -- rax : argumentsList
// -- rdx : new.target
// -- rdi : target
// -- rsp[0] : return address
// -- rsp[8] : receiver (undefined)
// -----------------------------------
// 2. Make sure the target is actually a constructor.
Label target_not_constructor;
__ JumpIfSmi(rdi, &target_not_constructor, Label::kNear);
__ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset));
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsConstructor));
__ j(zero, &target_not_constructor, Label::kNear);
// 3. Make sure the target is actually a constructor.
Label new_target_not_constructor;
__ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear);
__ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsConstructor));
__ j(zero, &new_target_not_constructor, Label::kNear);
// 4a. Construct the target with the given new.target and argumentsList.
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The target is not a constructor, throw an appropriate TypeError.
__ bind(&target_not_constructor);
{
StackArgumentsAccessor args(rsp, 0);
__ movp(args.GetReceiverOperand(), rdi);
__ TailCallRuntime(Runtime::kThrowCalledNonCallable);
}
// 4c. The new.target is not a constructor, throw an appropriate TypeError.
__ bind(&new_target_not_constructor);
{
StackArgumentsAccessor args(rsp, 0);
__ movp(args.GetReceiverOperand(), rdx);
__ TailCallRuntime(Runtime::kThrowCalledNonCallable);
}
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the InternalArray function.
__ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, kUnexpectedInitialMapForInternalArrayFunction);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, kUnexpectedInitialMapForArrayFunction);
}
__ movp(rdx, rdi);
// Run the native code for the Array function called as a normal function.
// tail call a stub
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : function
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
Condition const cc = (kind == MathMaxMinKind::kMin) ? below : above;
Heap::RootListIndex const root_index =
(kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex
: Heap::kMinusInfinityValueRootIndex;
XMMRegister const reg = (kind == MathMaxMinKind::kMin) ? xmm1 : xmm0;
// Load the accumulator with the default return value (either -Infinity or
// +Infinity), with the tagged value in rdx and the double value in xmm0.
__ LoadRoot(rdx, root_index);
__ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ Move(rcx, rax);
Label done_loop, loop;
__ bind(&loop);
{
// Check if all parameters done.
__ testp(rcx, rcx);
__ j(zero, &done_loop);
// Load the next parameter tagged value into rbx.
__ movp(rbx, Operand(rsp, rcx, times_pointer_size, 0));
// Load the double value of the parameter into xmm1, maybe converting the
// parameter to a number first using the ToNumber builtin if necessary.
Label convert, convert_smi, convert_number, done_convert;
__ bind(&convert);
__ JumpIfSmi(rbx, &convert_smi);
__ JumpIfRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex, &convert_number);
{
// Parameter is not a Number, use the ToNumber builtin to convert it.
FrameScope scope(masm, StackFrame::MANUAL);
__ Push(rbp);
__ Move(rbp, rsp);
__ Push(rsi);
__ Push(rdi);
__ Integer32ToSmi(rax, rax);
__ Integer32ToSmi(rcx, rcx);
__ Push(rax);
__ Push(rcx);
__ Push(rdx);
__ movp(rax, rbx);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ movp(rbx, rax);
__ Pop(rdx);
__ Pop(rcx);
__ Pop(rax);
__ Pop(rdi);
__ Pop(rsi);
{
// Restore the double accumulator value (xmm0).
Label restore_smi, done_restore;
__ JumpIfSmi(rdx, &restore_smi, Label::kNear);
__ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ jmp(&done_restore, Label::kNear);
__ bind(&restore_smi);
__ SmiToDouble(xmm0, rdx);
__ bind(&done_restore);
}
__ SmiToInteger32(rcx, rcx);
__ SmiToInteger32(rax, rax);
__ leave();
}
__ jmp(&convert);
__ bind(&convert_number);
__ Movsd(xmm1, FieldOperand(rbx, HeapNumber::kValueOffset));
__ jmp(&done_convert, Label::kNear);
__ bind(&convert_smi);
__ SmiToDouble(xmm1, rbx);
__ bind(&done_convert);
// Perform the actual comparison with the accumulator value on the left hand
// side (xmm0) and the next parameter value on the right hand side (xmm1).
Label compare_equal, compare_nan, compare_swap, done_compare;
__ Ucomisd(xmm0, xmm1);
__ j(parity_even, &compare_nan, Label::kNear);
__ j(cc, &done_compare, Label::kNear);
__ j(equal, &compare_equal, Label::kNear);
// Result is on the right hand side.
__ bind(&compare_swap);
__ Movaps(xmm0, xmm1);
__ Move(rdx, rbx);
__ jmp(&done_compare, Label::kNear);
// At least one side is NaN, which means that the result will be NaN too.
__ bind(&compare_nan);
__ LoadRoot(rdx, Heap::kNanValueRootIndex);
__ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ jmp(&done_compare, Label::kNear);
// Left and right hand side are equal, check for -0 vs. +0.
__ bind(&compare_equal);
__ Movmskpd(kScratchRegister, reg);
__ testl(kScratchRegister, Immediate(1));
__ j(not_zero, &compare_swap);
__ bind(&done_compare);
__ decp(rcx);
__ jmp(&loop);
}
__ bind(&done_loop);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
__ movp(rax, rdx);
__ Ret();
}
// static
void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// 1. Load the first argument into rax and get rid of the rest (including the
// receiver).
Label no_arguments;
{
StackArgumentsAccessor args(rsp, rax);
__ testp(rax, rax);
__ j(zero, &no_arguments, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(1));
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
__ movp(rax, rbx);
}
// 2a. Convert the first argument to a number.
__ Jump(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
// 2b. No arguments, return +0 (already in rax).
__ bind(&no_arguments);
__ ret(1 * kPointerSize);
}
// static
void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rdx : new target
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// 2. Load the first argument into rbx and get rid of the rest (including the
// receiver).
{
StackArgumentsAccessor args(rsp, rax);
Label no_arguments, done;
__ testp(rax, rax);
__ j(zero, &no_arguments, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(1));
__ jmp(&done, Label::kNear);
__ bind(&no_arguments);
__ Move(rbx, Smi::FromInt(0));
__ bind(&done);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
}
// 3. Make sure rbx is a number.
{
Label done_convert;
__ JumpIfSmi(rbx, &done_convert);
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(equal, &done_convert);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdx);
__ Push(rdi);
__ Move(rax, rbx);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ Move(rbx, rax);
__ Pop(rdi);
__ Pop(rdx);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label new_object;
__ cmpp(rdx, rdi);
__ j(not_equal, &new_object);
// 5. Allocate a JSValue wrapper for the number.
__ AllocateJSValue(rax, rdi, rbx, rcx, &new_object);
__ Ret();
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rbx); // the first argument
FastNewObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ Pop(FieldOperand(rax, JSValue::kValueOffset));
}
__ Ret();
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// 1. Load the first argument into rax and get rid of the rest (including the
// receiver).
Label no_arguments;
{
StackArgumentsAccessor args(rsp, rax);
__ testp(rax, rax);
__ j(zero, &no_arguments, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(1));
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
__ movp(rax, rbx);
}
// 2a. At least one argument, return rax if it's a string, otherwise
// dispatch to appropriate conversion.
Label to_string, symbol_descriptive_string;
{
__ JumpIfSmi(rax, &to_string, Label::kNear);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx);
__ j(above, &to_string, Label::kNear);
__ j(equal, &symbol_descriptive_string, Label::kNear);
__ Ret();
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(rax, Heap::kempty_stringRootIndex);
__ ret(1 * kPointerSize);
}
// 3a. Convert rax to a string.
__ bind(&to_string);
{
ToStringStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// 3b. Convert symbol in rax to a string.
__ bind(&symbol_descriptive_string);
{
__ PopReturnAddressTo(rcx);
__ Push(rax);
__ PushReturnAddressFrom(rcx);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString);
}
}
// static
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rdx : new target
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// 2. Load the first argument into rbx and get rid of the rest (including the
// receiver).
{
StackArgumentsAccessor args(rsp, rax);
Label no_arguments, done;
__ testp(rax, rax);
__ j(zero, &no_arguments, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(1));
__ jmp(&done, Label::kNear);
__ bind(&no_arguments);
__ LoadRoot(rbx, Heap::kempty_stringRootIndex);
__ bind(&done);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
}
// 3. Make sure rbx is a string.
{
Label convert, done_convert;
__ JumpIfSmi(rbx, &convert, Label::kNear);
__ CmpObjectType(rbx, FIRST_NONSTRING_TYPE, rcx);
__ j(below, &done_convert);
__ bind(&convert);
{
FrameScope scope(masm, StackFrame::INTERNAL);
ToStringStub stub(masm->isolate());
__ Push(rdx);
__ Push(rdi);
__ Move(rax, rbx);
__ CallStub(&stub);
__ Move(rbx, rax);
__ Pop(rdi);
__ Pop(rdx);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label new_object;
__ cmpp(rdx, rdi);
__ j(not_equal, &new_object);
// 5. Allocate a JSValue wrapper for the string.
__ AllocateJSValue(rax, rdi, rbx, rcx, &new_object);
__ Ret();
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rbx); // the first argument
FastNewObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ Pop(FieldOperand(rax, JSValue::kValueOffset));
}
__ Ret();
}
static void ArgumentsAdaptorStackCheck(MacroAssembler* masm,
Label* stack_overflow) {
// ----------- S t a t e -------------
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdx : new target (passed through to callee)
// -- rdi : function (passed through to callee)
// -----------------------------------
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(r8, Heap::kRealStackLimitRootIndex);
__ movp(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subp(rcx, r8);
// Make r8 the space we need for the array when it is unrolled onto the
// stack.
__ movp(r8, rbx);
__ shlp(r8, Immediate(kPointerSizeLog2));
// Check if the arguments will overflow the stack.
__ cmpp(rcx, r8);
__ j(less_equal, stack_overflow); // Signed comparison.
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ pushq(rbp);
__ movp(rbp, rsp);
// Store the arguments adaptor context sentinel.
__ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
// Push the function on the stack.
__ Push(rdi);
// Preserve the number of arguments on the stack. Must preserve rax,
// rbx and rcx because these registers are used when copying the
// arguments and the receiver.
__ Integer32ToSmi(r8, rax);
__ Push(r8);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack. Number is a Smi.
__ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ movp(rsp, rbp);
__ popq(rbp);
// Remove caller arguments from the stack.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
}
// static
void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rdx : requested object size (untagged)
// -- rsp[0] : return address
// -----------------------------------
__ Integer32ToSmi(rdx, rdx);
__ PopReturnAddressTo(rcx);
__ Push(rdx);
__ PushReturnAddressFrom(rcx);
__ Move(rsi, Smi::FromInt(0));
__ TailCallRuntime(Runtime::kAllocateInNewSpace);
}
// static
void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rdx : requested object size (untagged)
// -- rsp[0] : return address
// -----------------------------------
__ Integer32ToSmi(rdx, rdx);
__ PopReturnAddressTo(rcx);
__ Push(rdx);
__ Push(Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
__ PushReturnAddressFrom(rcx);
__ Move(rsi, Smi::FromInt(0));
__ TailCallRuntime(Runtime::kAllocateInTargetSpace);
}
void Builtins::Generate_StringToNumber(MacroAssembler* masm) {
// The StringToNumber stub takes one argument in rax.
__ AssertString(rax);
// Check if string has a cached array index.
Label runtime;
__ testl(FieldOperand(rax, String::kHashFieldOffset),
Immediate(String::kContainsCachedArrayIndexMask));
__ j(not_zero, &runtime, Label::kNear);
__ movl(rax, FieldOperand(rax, String::kHashFieldOffset));
__ IndexFromHash(rax, rax);
__ Ret();
__ bind(&runtime);
{
FrameScope frame(masm, StackFrame::INTERNAL);
// Push argument.
__ Push(rax);
// We cannot use a tail call here because this builtin can also be called
// from wasm.
__ CallRuntime(Runtime::kStringToNumber);
}
__ Ret();
}
// static
void Builtins::Generate_ToNumber(MacroAssembler* masm) {
// The ToNumber stub takes one argument in rax.
Label not_smi;
__ JumpIfNotSmi(rax, ¬_smi, Label::kNear);
__ Ret();
__ bind(¬_smi);
Label not_heap_number;
__ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, ¬_heap_number, Label::kNear);
__ Ret();
__ bind(¬_heap_number);
__ Jump(masm->isolate()->builtins()->NonNumberToNumber(),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_NonNumberToNumber(MacroAssembler* masm) {
// The NonNumberToNumber stub takes one argument in rax.
__ AssertNotNumber(rax);
Label not_string;
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdi);
// rax: object
// rdi: object map
__ j(above_equal, ¬_string, Label::kNear);
__ Jump(masm->isolate()->builtins()->StringToNumber(),
RelocInfo::CODE_TARGET);
__ bind(¬_string);
Label not_oddball;
__ CmpInstanceType(rdi, ODDBALL_TYPE);
__ j(not_equal, ¬_oddball, Label::kNear);
__ movp(rax, FieldOperand(rax, Oddball::kToNumberOffset));
__ Ret();
__ bind(¬_oddball);
{
FrameScope frame(masm, StackFrame::INTERNAL);
// Push argument.
__ Push(rax);
// We cannot use a tail call here because this builtin can also be called
// from wasm.
__ CallRuntime(Runtime::kToNumber);
}
__ Ret();
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdx : new target (passed through to callee)
// -- rdi : function (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->arguments_adaptors(), 1);
Label enough, too_few;
__ cmpp(rax, rbx);
__ j(less, &too_few);
__ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
ArgumentsAdaptorStackCheck(masm, &stack_overflow);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ leap(rax, Operand(rbp, rax, times_pointer_size, offset));
__ Set(r8, -1); // account for receiver
Label copy;
__ bind(©);
__ incp(r8);
__ Push(Operand(rax, 0));
__ subp(rax, Immediate(kPointerSize));
__ cmpp(r8, rbx);
__ j(less, ©);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
ArgumentsAdaptorStackCheck(masm, &stack_overflow);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ leap(rdi, Operand(rbp, rax, times_pointer_size, offset));
__ Set(r8, -1); // account for receiver
Label copy;
__ bind(©);
__ incp(r8);
__ Push(Operand(rdi, 0));
__ subp(rdi, Immediate(kPointerSize));
__ cmpp(r8, rax);
__ j(less, ©);
// Fill remaining expected arguments with undefined values.
Label fill;
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ bind(&fill);
__ incp(r8);
__ Push(kScratchRegister);
__ cmpp(r8, rbx);
__ j(less, &fill);
// Restore function pointer.
__ movp(rdi, Operand(rbp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
}
// Call the entry point.
__ bind(&invoke);
__ movp(rax, rbx);
// rax : expected number of arguments
// rdx : new target (passed through to callee)
// rdi : function (passed through to callee)
__ movp(rcx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ call(rcx);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ movp(rcx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ jmp(rcx);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
}
// static
void Builtins::Generate_Apply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argumentsList
// -- rdi : target
// -- rdx : new.target (checked to be constructor or undefined)
// -- rsp[0] : return address.
// -- rsp[8] : thisArgument
// -----------------------------------
// Create the list of arguments from the array-like argumentsList.
{
Label create_arguments, create_array, create_runtime, done_create;
__ JumpIfSmi(rax, &create_runtime);
// Load the map of argumentsList into rcx.
__ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset));
// Load native context into rbx.
__ movp(rbx, NativeContextOperand());
// Check if argumentsList is an (unmodified) arguments object.
__ cmpp(rcx, ContextOperand(rbx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
__ j(equal, &create_arguments);
__ cmpp(rcx, ContextOperand(rbx, Context::STRICT_ARGUMENTS_MAP_INDEX));
__ j(equal, &create_arguments);
// Check if argumentsList is a fast JSArray.
__ CmpInstanceType(rcx, JS_ARRAY_TYPE);
__ j(equal, &create_array);
// Ask the runtime to create the list (actually a FixedArray).
__ bind(&create_runtime);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ Push(rdx);
__ Push(rax);
__ CallRuntime(Runtime::kCreateListFromArrayLike);
__ Pop(rdx);
__ Pop(rdi);
__ SmiToInteger32(rbx, FieldOperand(rax, FixedArray::kLengthOffset));
}
__ jmp(&done_create);
// Try to create the list from an arguments object.
__ bind(&create_arguments);
__ movp(rbx, FieldOperand(rax, JSArgumentsObject::kLengthOffset));
__ movp(rcx, FieldOperand(rax, JSObject::kElementsOffset));
__ cmpp(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
__ j(not_equal, &create_runtime);
__ SmiToInteger32(rbx, rbx);
__ movp(rax, rcx);
__ jmp(&done_create);
// Try to create the list from a JSArray object.
__ bind(&create_array);
__ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
__ DecodeField<Map::ElementsKindBits>(rcx);
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
__ cmpl(rcx, Immediate(FAST_ELEMENTS));
__ j(above, &create_runtime);
__ cmpl(rcx, Immediate(FAST_HOLEY_SMI_ELEMENTS));
__ j(equal, &create_runtime);
__ SmiToInteger32(rbx, FieldOperand(rax, JSArray::kLengthOffset));
__ movp(rax, FieldOperand(rax, JSArray::kElementsOffset));
__ bind(&done_create);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movp(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subp(rcx, kScratchRegister);
__ sarp(rcx, Immediate(kPointerSizeLog2));
// Check if the arguments will overflow the stack.
__ cmpp(rcx, rbx);
__ j(greater, &done, Label::kNear); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// ----------- S t a t e -------------
// -- rdi : target
// -- rax : args (a FixedArray built from argumentsList)
// -- rbx : len (number of elements to push from args)
// -- rdx : new.target (checked to be constructor or undefined)
// -- rsp[0] : return address.
// -- rsp[8] : thisArgument
// -----------------------------------
// Push arguments onto the stack (thisArgument is already on the stack).
{
__ PopReturnAddressTo(r8);
__ Set(rcx, 0);
Label done, loop;
__ bind(&loop);
__ cmpl(rcx, rbx);
__ j(equal, &done, Label::kNear);
__ Push(
FieldOperand(rax, rcx, times_pointer_size, FixedArray::kHeaderSize));
__ incl(rcx);
__ jmp(&loop);
__ bind(&done);
__ PushReturnAddressFrom(r8);
__ Move(rax, rcx);
}
// Dispatch to Call or Construct depending on whether new.target is undefined.
{
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(equal, masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
}
namespace {
// Drops top JavaScript frame and an arguments adaptor frame below it (if
// present) preserving all the arguments prepared for current call.
// Does nothing if debugger is currently active.
// ES6 14.6.3. PrepareForTailCall
//
// Stack structure for the function g() tail calling f():
//
// ------- Caller frame: -------
// | ...
// | g()'s arg M
// | ...
// | g()'s arg 1
// | g()'s receiver arg
// | g()'s caller pc
// ------- g()'s frame: -------
// | g()'s caller fp <- fp
// | g()'s context
// | function pointer: g
// | -------------------------
// | ...
// | ...
// | f()'s arg N
// | ...
// | f()'s arg 1
// | f()'s receiver arg
// | f()'s caller pc <- sp
// ----------------------
//
void PrepareForTailCall(MacroAssembler* masm, Register args_reg,
Register scratch1, Register scratch2,
Register scratch3) {
DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
Comment cmnt(masm, "[ PrepareForTailCall");
// Prepare for tail call only if ES2015 tail call elimination is active.
Label done;
ExternalReference is_tail_call_elimination_enabled =
ExternalReference::is_tail_call_elimination_enabled_address(
masm->isolate());
__ Move(kScratchRegister, is_tail_call_elimination_enabled);
__ cmpb(Operand(kScratchRegister, 0), Immediate(0));
__ j(equal, &done);
// Drop possible interpreter handler/stub frame.
{
Label no_interpreter_frame;
__ Cmp(Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset),
Smi::FromInt(StackFrame::STUB));
__ j(not_equal, &no_interpreter_frame, Label::kNear);
__ movp(rbp, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ bind(&no_interpreter_frame);
}
// Check if next frame is an arguments adaptor frame.
Register caller_args_count_reg = scratch1;
Label no_arguments_adaptor, formal_parameter_count_loaded;
__ movp(scratch2, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ Cmp(Operand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(not_equal, &no_arguments_adaptor, Label::kNear);
// Drop current frame and load arguments count from arguments adaptor frame.
__ movp(rbp, scratch2);
__ SmiToInteger32(
caller_args_count_reg,
Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ jmp(&formal_parameter_count_loaded, Label::kNear);
__ bind(&no_arguments_adaptor);
// Load caller's formal parameter count
__ movp(scratch1, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movp(scratch1,
FieldOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
__ LoadSharedFunctionInfoSpecialField(
caller_args_count_reg, scratch1,
SharedFunctionInfo::kFormalParameterCountOffset);
__ bind(&formal_parameter_count_loaded);
ParameterCount callee_args_count(args_reg);
__ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
scratch3, ReturnAddressState::kOnStack);
__ bind(&done);
}
} // namespace
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the function to call (checked to be a JSFunction)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
__ AssertFunction(rdi);
// ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testb(FieldOperand(rdx, SharedFunctionInfo::kFunctionKindByteOffset),
Immediate(SharedFunctionInfo::kClassConstructorBitsWithinByte));
__ j(not_zero, &class_constructor);
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -----------------------------------
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
SharedFunctionInfo::kStrictModeByteOffset);
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset),
Immediate((1 << SharedFunctionInfo::kNativeBitWithinByte) |
(1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
__ j(not_zero, &done_convert);
{
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -- rsi : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(rcx);
} else {
Label convert_to_object, convert_receiver;
__ movp(rcx, args.GetReceiverOperand());
__ JumpIfSmi(rcx, &convert_to_object, Label::kNear);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx);
__ j(above_equal, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(rcx, Heap::kUndefinedValueRootIndex,
&convert_global_proxy, Label::kNear);
__ JumpIfNotRoot(rcx, Heap::kNullValueRootIndex, &convert_to_object,
Label::kNear);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(rcx);
}
__ jmp(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ Integer32ToSmi(rax, rax);
__ Push(rax);
__ Push(rdi);
__ movp(rax, rcx);
ToObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ movp(rcx, rax);
__ Pop(rdi);
__ Pop(rax);
__ SmiToInteger32(rax, rax);
}
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ movp(args.GetReceiverOperand(), rcx);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -- rsi : the function context.
// -----------------------------------
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, rax, rbx, rcx, r8);
}
__ LoadSharedFunctionInfoSpecialField(
rbx, rdx, SharedFunctionInfo::kFormalParameterCountOffset);
ParameterCount actual(rax);
ParameterCount expected(rbx);
__ InvokeFunctionCode(rdi, no_reg, expected, actual, JUMP_FUNCTION,
CheckDebugStepCallWrapper());
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : new.target (only in case of [[Construct]])
// -- rdi : target (checked to be a JSBoundFunction)
// -----------------------------------
// Load [[BoundArguments]] into rcx and length of that into rbx.
Label no_bound_arguments;
__ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
__ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
__ testl(rbx, rbx);
__ j(zero, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : new.target (only in case of [[Construct]])
// -- rdi : target (checked to be a JSBoundFunction)
// -- rcx : the [[BoundArguments]] (implemented as FixedArray)
// -- rbx : the number of [[BoundArguments]] (checked to be non-zero)
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ leap(kScratchRegister, Operand(rbx, times_pointer_size, 0));
__ subp(rsp, kScratchRegister);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CompareRoot(rsp, Heap::kRealStackLimitRootIndex);
__ j(greater, &done, Label::kNear); // Signed comparison.
// Restore the stack pointer.
__ leap(rsp, Operand(rsp, rbx, times_pointer_size, 0));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Adjust effective number of arguments to include return address.
__ incl(rax);
// Relocate arguments and return address down the stack.
{
Label loop;
__ Set(rcx, 0);
__ leap(rbx, Operand(rsp, rbx, times_pointer_size, 0));
__ bind(&loop);
__ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ movp(Operand(rsp, rcx, times_pointer_size, 0), kScratchRegister);
__ incl(rcx);
__ cmpl(rcx, rax);
__ j(less, &loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop;
__ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
__ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
__ bind(&loop);
__ decl(rbx);
__ movp(kScratchRegister, FieldOperand(rcx, rbx, times_pointer_size,
FixedArray::kHeaderSize));
__ movp(Operand(rsp, rax, times_pointer_size, 0), kScratchRegister);
__ leal(rax, Operand(rax, 1));
__ j(greater, &loop);
}
// Adjust effective number of arguments (rax contains the number of
// arguments from the call plus return address plus the number of
// [[BoundArguments]]), so we need to subtract one for the return address.
__ decl(rax);
}
__ bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(rdi);
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, rax, rbx, rcx, r8);
}
// Patch the receiver to [[BoundThis]].
StackArgumentsAccessor args(rsp, rax);
__ movp(rbx, FieldOperand(rdi, JSBoundFunction::kBoundThisOffset));
__ movp(args.GetReceiverOperand(), rbx);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Load(rcx,
ExternalReference(Builtins::kCall_ReceiverIsAny, masm->isolate()));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ jmp(rcx);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the target to call (can be any Object)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
Label non_callable, non_function, non_smi;
__ JumpIfSmi(rdi, &non_callable);
__ bind(&non_smi);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(equal, masm->isolate()->builtins()->CallFunction(mode, tail_call_mode),
RelocInfo::CODE_TARGET);
__ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE);
__ j(equal, masm->isolate()->builtins()->CallBoundFunction(tail_call_mode),
RelocInfo::CODE_TARGET);
// Check if target has a [[Call]] internal method.
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsCallable));
__ j(zero, &non_callable);
__ CmpInstanceType(rcx, JS_PROXY_TYPE);
__ j(not_equal, &non_function);
// 0. Prepare for tail call if necessary.
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, rax, rbx, rcx, r8);
}
// 1. Runtime fallback for Proxy [[Call]].
__ PopReturnAddressTo(kScratchRegister);
__ Push(rdi);
__ PushReturnAddressFrom(kScratchRegister);
// Increase the arguments size to include the pushed function and the
// existing receiver on the stack.
__ addp(rax, Immediate(2));
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyCall, masm->isolate()));
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ movp(args.GetReceiverOperand(), rdi);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (checked to be a constructor)
// -- rdi : the constructor to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(rdi);
// Calling convention for function specific ConstructStubs require
// rbx to contain either an AllocationSite or undefined.
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ jmp(rcx);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (checked to be a constructor)
// -- rdi : the constructor to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(rdi);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ cmpp(rdi, rdx);
__ j(not_equal, &done, Label::kNear);
__ movp(rdx,
FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Load(rcx, ExternalReference(Builtins::kConstruct, masm->isolate()));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ jmp(rcx);
}
// static
void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the constructor to call (checked to be a JSProxy)
// -- rdx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Call into the Runtime for Proxy [[Construct]].
__ PopReturnAddressTo(kScratchRegister);
__ Push(rdi);
__ Push(rdx);
__ PushReturnAddressFrom(kScratchRegister);
// Include the pushed new_target, constructor and the receiver.
__ addp(rax, Immediate(3));
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyConstruct, masm->isolate()));
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (can be any Object)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
// Check if target is a Smi.
Label non_constructor;
__ JumpIfSmi(rdi, &non_constructor, Label::kNear);
// Dispatch based on instance type.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(equal, masm->isolate()->builtins()->ConstructFunction(),
RelocInfo::CODE_TARGET);
// Check if target has a [[Construct]] internal method.
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsConstructor));
__ j(zero, &non_constructor, Label::kNear);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE);
__ j(equal, masm->isolate()->builtins()->ConstructBoundFunction(),
RelocInfo::CODE_TARGET);
// Only dispatch to proxies after checking whether they are constructors.
__ CmpInstanceType(rcx, JS_PROXY_TYPE);
__ j(equal, masm->isolate()->builtins()->ConstructProxy(),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ movp(args.GetReceiverOperand(), rdi);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
RelocInfo::CODE_TARGET);
}
static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver,
Register function_template_info,
Register scratch0, Register scratch1,
Register scratch2,
Label* receiver_check_failed) {
Register signature = scratch0;
Register map = scratch1;
Register constructor = scratch2;
// If there is no signature, return the holder.
__ movp(signature, FieldOperand(function_template_info,
FunctionTemplateInfo::kSignatureOffset));
__ CompareRoot(signature, Heap::kUndefinedValueRootIndex);
Label receiver_check_passed;
__ j(equal, &receiver_check_passed, Label::kNear);
// Walk the prototype chain.
__ movp(map, FieldOperand(receiver, HeapObject::kMapOffset));
Label prototype_loop_start;
__ bind(&prototype_loop_start);
// Get the constructor, if any.
__ GetMapConstructor(constructor, map, kScratchRegister);
__ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE);
Label next_prototype;
__ j(not_equal, &next_prototype, Label::kNear);
// Get the constructor's signature.
Register type = constructor;
__ movp(type,
FieldOperand(constructor, JSFunction::kSharedFunctionInfoOffset));
__ movp(type, FieldOperand(type, SharedFunctionInfo::kFunctionDataOffset));
// Loop through the chain of inheriting function templates.
Label function_template_loop;
__ bind(&function_template_loop);
// If the signatures match, we have a compatible receiver.
__ cmpp(signature, type);
__ j(equal, &receiver_check_passed, Label::kNear);
// If the current type is not a FunctionTemplateInfo, load the next prototype
// in the chain.
__ JumpIfSmi(type, &next_prototype, Label::kNear);
__ CmpObjectType(type, FUNCTION_TEMPLATE_INFO_TYPE, kScratchRegister);
__ j(not_equal, &next_prototype, Label::kNear);
// Otherwise load the parent function template and iterate.
__ movp(type,
FieldOperand(type, FunctionTemplateInfo::kParentTemplateOffset));
__ jmp(&function_template_loop, Label::kNear);
// Load the next prototype.
__ bind(&next_prototype);
__ testq(FieldOperand(map, Map::kBitField3Offset),
Immediate(Map::HasHiddenPrototype::kMask));
__ j(zero, receiver_check_failed);
__ movp(receiver, FieldOperand(map, Map::kPrototypeOffset));
__ movp(map, FieldOperand(receiver, HeapObject::kMapOffset));
// Iterate.
__ jmp(&prototype_loop_start, Label::kNear);
__ bind(&receiver_check_passed);
}
void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments (not including the receiver)
// -- rdi : callee
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -- ...
// -- rsp[rax * 8] : first argument
// -- rsp[(rax + 1) * 8] : receiver
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
// Load the FunctionTemplateInfo.
__ movp(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rbx, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset));
// Do the compatible receiver check.
Label receiver_check_failed;
__ movp(rcx, args.GetReceiverOperand());
CompatibleReceiverCheck(masm, rcx, rbx, rdx, r8, r9, &receiver_check_failed);
// Get the callback offset from the FunctionTemplateInfo, and jump to the
// beginning of the code.
__ movp(rdx, FieldOperand(rbx, FunctionTemplateInfo::kCallCodeOffset));
__ movp(rdx, FieldOperand(rdx, CallHandlerInfo::kFastHandlerOffset));
__ addp(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(rdx);
// Compatible receiver check failed: pop return address, arguments and
// receiver and throw an Illegal Invocation exception.
__ bind(&receiver_check_failed);
__ PopReturnAddressTo(rbx);
__ leap(rax, Operand(rax, times_pointer_size, 1 * kPointerSize));
__ addp(rsp, rax);
__ PushReturnAddressFrom(rbx);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ TailCallRuntime(Runtime::kThrowIllegalInvocation);
}
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ Push(rax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
Label skip;
// If the code object is null, just return to the unoptimized code.
__ cmpp(rax, Immediate(0));
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
__ bind(&skip);
// Load deoptimization data from the code object.
__ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
__ SmiToInteger32(rbx, Operand(rbx, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
// Compute the target address = code_obj + header_size + osr_offset
__ leap(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag));
// Overwrite the return address on the stack.
__ movq(StackOperandForReturnAddress(0), rax);
// And "return" to the OSR entry point of the function.
__ ret(0);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64