// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X64 #include "src/code-factory.h" #include "src/codegen.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id) { // ----------- S t a t e ------------- // -- rax : number of arguments excluding receiver // -- rdi : target // -- rdx : new.target // -- rsp[0] : return address // -- rsp[8] : last argument // -- ... // -- rsp[8 * argc] : first argument // -- rsp[8 * (argc + 1)] : receiver // ----------------------------------- __ AssertFunction(rdi); // Make sure we operate in the context of the called function (for example // ConstructStubs implemented in C++ will be run in the context of the caller // instead of the callee, due to the way that [[Construct]] is defined for // ordinary functions). __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Unconditionally insert the target and new target as extra arguments. They // will be used by stack frame iterators when constructing the stack trace. const int num_extra_args = 2; __ PopReturnAddressTo(kScratchRegister); __ Push(rdi); __ Push(rdx); __ PushReturnAddressFrom(kScratchRegister); // JumpToExternalReference expects rax to contain the number of arguments // including the receiver and the extra arguments. __ addp(rax, Immediate(num_extra_args + 1)); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ movp(kScratchRegister, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(kScratchRegister, FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset)); __ leap(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize)); __ jmp(kScratchRegister); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- rax : argument count (preserved for callee) // -- rdx : new target (preserved for callee) // -- rdi : target function (preserved for callee) // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Push the number of arguments to the callee. __ Integer32ToSmi(rax, rax); __ Push(rax); // Push a copy of the target function and the new target. __ Push(rdi); __ Push(rdx); // Function is also the parameter to the runtime call. __ Push(rdi); __ CallRuntime(function_id, 1); __ movp(rbx, rax); // Restore target function and new target. __ Pop(rdx); __ Pop(rdi); __ Pop(rax); __ SmiToInteger32(rax, rax); } __ leap(rbx, FieldOperand(rbx, Code::kHeaderSize)); __ jmp(rbx); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok); GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode); __ bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool create_implicit_receiver, bool check_derived_construct) { // ----------- S t a t e ------------- // -- rax: number of arguments // -- rsi: context // -- rdi: constructor function // -- rbx: allocation site or undefined // -- rdx: new target // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ AssertUndefinedOrAllocationSite(rbx); __ Push(rsi); __ Push(rbx); __ Integer32ToSmi(rcx, rax); __ Push(rcx); if (create_implicit_receiver) { // Allocate the new receiver object. __ Push(rdi); __ Push(rdx); FastNewObjectStub stub(masm->isolate()); __ CallStub(&stub); __ movp(rbx, rax); __ Pop(rdx); __ Pop(rdi); // ----------- S t a t e ------------- // -- rdi: constructor function // -- rbx: newly allocated object // -- rdx: new target // ----------------------------------- // Retrieve smi-tagged arguments count from the stack. __ SmiToInteger32(rax, Operand(rsp, 0 * kPointerSize)); } if (create_implicit_receiver) { // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(rbx); __ Push(rbx); } else { __ PushRoot(Heap::kTheHoleValueRootIndex); } // Set up pointer to last argument. __ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ movp(rcx, rax); __ jmp(&entry); __ bind(&loop); __ Push(Operand(rbx, rcx, times_pointer_size, 0)); __ bind(&entry); __ decp(rcx); __ j(greater_equal, &loop); // Call the function. ParameterCount actual(rax); __ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION, CheckDebugStepCallWrapper()); // Store offset of return address for deoptimizer. if (create_implicit_receiver && !is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. __ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); if (create_implicit_receiver) { // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(rax, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); __ j(above_equal, &exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ movp(rax, Operand(rsp, 0)); // Restore the arguments count and leave the construct frame. The // arguments count is stored below the receiver. __ bind(&exit); __ movp(rbx, Operand(rsp, 1 * kPointerSize)); } else { __ movp(rbx, Operand(rsp, 0)); } // Leave construct frame. } // ES6 9.2.2. Step 13+ // Check that the result is not a Smi, indicating that the constructor result // from a derived class is neither undefined nor an Object. if (check_derived_construct) { Label dont_throw; __ JumpIfNotSmi(rax, &dont_throw); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject); } __ bind(&dont_throw); } // Remove caller arguments from the stack and return. __ PopReturnAddressTo(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ PushReturnAddressFrom(rcx); if (create_implicit_receiver) { Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->constructed_objects(), 1); } __ ret(0); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false, false); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false, false); } void Builtins::Generate_JSBuiltinsConstructStubForDerived( MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false, true); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdi); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } enum IsTagged { kRaxIsSmiTagged, kRaxIsUntaggedInt }; // Clobbers rcx, r11, kScratchRegister; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, IsTagged rax_is_tagged) { // rax : the number of items to be pushed to the stack // // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); __ movp(rcx, rsp); // Make rcx the space we have left. The stack might already be overflowed // here which will cause rcx to become negative. __ subp(rcx, kScratchRegister); // Make r11 the space we need for the array when it is unrolled onto the // stack. if (rax_is_tagged == kRaxIsSmiTagged) { __ PositiveSmiTimesPowerOfTwoToInteger64(r11, rax, kPointerSizeLog2); } else { DCHECK(rax_is_tagged == kRaxIsUntaggedInt); __ movp(r11, rax); __ shlq(r11, Immediate(kPointerSizeLog2)); } // Check if the arguments will overflow the stack. __ cmpp(rcx, r11); __ j(greater, &okay); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { ProfileEntryHookStub::MaybeCallEntryHook(masm); // Expects five C++ function parameters. // - Object* new_target // - JSFunction* function // - Object* receiver // - int argc // - Object*** argv // (see Handle::Invoke in execution.cc). // Open a C++ scope for the FrameScope. { // Platform specific argument handling. After this, the stack contains // an internal frame and the pushed function and receiver, and // register rax and rbx holds the argument count and argument array, // while rdi holds the function pointer, rsi the context, and rdx the // new.target. #ifdef _WIN64 // MSVC parameters in: // rcx : new_target // rdx : function // r8 : receiver // r9 : argc // [rsp+0x20] : argv // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address(Isolate::kContextAddress, masm->isolate()); __ movp(rsi, masm->ExternalOperand(context_address)); // Push the function and the receiver onto the stack. __ Push(rdx); __ Push(r8); // Load the number of arguments and setup pointer to the arguments. __ movp(rax, r9); // Load the previous frame pointer to access C argument on stack __ movp(kScratchRegister, Operand(rbp, 0)); __ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); // Load the function pointer into rdi. __ movp(rdi, rdx); // Load the new.target into rdx. __ movp(rdx, rcx); #else // _WIN64 // GCC parameters in: // rdi : new_target // rsi : function // rdx : receiver // rcx : argc // r8 : argv __ movp(r11, rdi); __ movp(rdi, rsi); // rdi : function // r11 : new_target // Clear the context before we push it when entering the internal frame. __ Set(rsi, 0); // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address(Isolate::kContextAddress, masm->isolate()); __ movp(rsi, masm->ExternalOperand(context_address)); // Push the function and receiver onto the stack. __ Push(rdi); __ Push(rdx); // Load the number of arguments and setup pointer to the arguments. __ movp(rax, rcx); __ movp(rbx, r8); // Load the new.target into rdx. __ movp(rdx, r11); #endif // _WIN64 // Current stack contents: // [rsp + 2 * kPointerSize ... ] : Internal frame // [rsp + kPointerSize] : function // [rsp] : receiver // Current register contents: // rax : argc // rbx : argv // rsi : context // rdi : function // rdx : new.target // Check if we have enough stack space to push all arguments. // Expects argument count in rax. Clobbers rcx, r11. Generate_CheckStackOverflow(masm, kRaxIsUntaggedInt); // Copy arguments to the stack in a loop. // Register rbx points to array of pointers to handle locations. // Push the values of these handles. Label loop, entry; __ Set(rcx, 0); // Set loop variable to 0. __ jmp(&entry, Label::kNear); __ bind(&loop); __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); __ Push(Operand(kScratchRegister, 0)); // dereference handle __ addp(rcx, Immediate(1)); __ bind(&entry); __ cmpp(rcx, rax); __ j(not_equal, &loop); // Invoke the builtin code. Handle<Code> builtin = is_construct ? masm->isolate()->builtins()->Construct() : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the internal frame. Notice that this also removes the empty // context and the function left on the stack by the code // invocation. } // TODO(X64): Is argument correct? Is there a receiver to remove? __ ret(1 * kPointerSize); // Remove receiver. } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the value to pass to the generator // -- rbx : the JSGeneratorObject to resume // -- rdx : the resume mode (tagged) // -- rsp[0] : return address // ----------------------------------- __ AssertGeneratorObject(rbx); // Store input value into generator object. __ movp(FieldOperand(rbx, JSGeneratorObject::kInputOrDebugPosOffset), rax); __ RecordWriteField(rbx, JSGeneratorObject::kInputOrDebugPosOffset, rax, rcx, kDontSaveFPRegs); // Store resume mode into generator object. __ movp(FieldOperand(rbx, JSGeneratorObject::kResumeModeOffset), rdx); // Load suspended function and context. __ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset)); __ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference last_step_action = ExternalReference::debug_last_step_action_address(masm->isolate()); Operand last_step_action_operand = masm->ExternalOperand(last_step_action); STATIC_ASSERT(StepFrame > StepIn); __ cmpb(last_step_action_operand, Immediate(StepIn)); __ j(greater_equal, &prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); Operand debug_suspended_generator_operand = masm->ExternalOperand(debug_suspended_generator); __ cmpp(rbx, debug_suspended_generator_operand); __ j(equal, &prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Pop return address. __ PopReturnAddressTo(rax); // Push receiver. __ Push(FieldOperand(rbx, JSGeneratorObject::kReceiverOffset)); // ----------- S t a t e ------------- // -- rax : return address // -- rbx : the JSGeneratorObject to resume // -- rdx : the resume mode (tagged) // -- rdi : generator function // -- rsi : generator context // -- rsp[0] : generator receiver // ----------------------------------- // Push holes for arguments to generator function. Since the parser forced // context allocation for any variables in generators, the actual argument // values have already been copied into the context and these dummy values // will never be used. __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ LoadSharedFunctionInfoSpecialField( rcx, rcx, SharedFunctionInfo::kFormalParameterCountOffset); { Label done_loop, loop; __ bind(&loop); __ subl(rcx, Immediate(1)); __ j(carry, &done_loop, Label::kNear); __ PushRoot(Heap::kTheHoleValueRootIndex); __ jmp(&loop); __ bind(&done_loop); } // Dispatch on the kind of generator object. Label old_generator; __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset)); __ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx); __ j(not_equal, &old_generator); // New-style (ignition/turbofan) generator object. { __ PushReturnAddressFrom(rax); __ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ LoadSharedFunctionInfoSpecialField( rax, rax, SharedFunctionInfo::kFormalParameterCountOffset); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ movp(rdx, rbx); __ jmp(FieldOperand(rdi, JSFunction::kCodeEntryOffset)); } // Old-style (full-codegen) generator object. __ bind(&old_generator); { // Enter a new JavaScript frame, and initialize its slots as they were when // the generator was suspended. FrameScope scope(masm, StackFrame::MANUAL); __ PushReturnAddressFrom(rax); // Return address. __ Push(rbp); // Caller's frame pointer. __ Move(rbp, rsp); __ Push(rsi); // Callee's context. __ Push(rdi); // Callee's JS Function. // Restore the operand stack. __ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset)); __ SmiToInteger32(rax, FieldOperand(rsi, FixedArray::kLengthOffset)); { Label done_loop, loop; __ Set(rcx, 0); __ bind(&loop); __ cmpl(rcx, rax); __ j(equal, &done_loop, Label::kNear); __ Push( FieldOperand(rsi, rcx, times_pointer_size, FixedArray::kHeaderSize)); __ addl(rcx, Immediate(1)); __ jmp(&loop); __ bind(&done_loop); } // Reset operand stack so we don't leak. __ LoadRoot(FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset), Heap::kEmptyFixedArrayRootIndex); // Restore context. __ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset)); // Resume the generator function at the continuation. __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); __ SmiToInteger64( rcx, FieldOperand(rbx, JSGeneratorObject::kContinuationOffset)); __ leap(rdx, FieldOperand(rdx, rcx, times_1, Code::kHeaderSize)); __ Move(FieldOperand(rbx, JSGeneratorObject::kContinuationOffset), Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)); __ movp(rax, rbx); // Continuation expects generator object in rax. __ jmp(rdx); } __ bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rbx); __ Push(rdx); __ Push(rdi); __ CallRuntime(Runtime::kDebugPrepareStepInIfStepping); __ Pop(rdx); __ Pop(rbx); __ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rbx); __ Push(rdx); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(rdx); __ Pop(rbx); __ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, Register scratch2) { Register args_count = scratch1; Register return_pc = scratch2; // Get the arguments + receiver count. __ movp(args_count, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ movl(args_count, FieldOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ leave(); // Drop receiver + arguments. __ PopReturnAddressTo(return_pc); __ addp(rsp, args_count); __ PushReturnAddressFrom(return_pc); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o rdi: the JS function object being called // o rdx: the new target // o rsi: our context // o rbp: the caller's frame pointer // o rsp: stack pointer (pointing to return address) // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ pushq(rbp); // Caller's frame pointer. __ movp(rbp, rsp); __ Push(rsi); // Callee's context. __ Push(rdi); // Callee's JS function. __ Push(rdx); // Callee's new target. // Get the bytecode array from the function object (or from the DebugInfo if // it is present) and load it into kInterpreterBytecodeArrayRegister. __ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); Label load_debug_bytecode_array, bytecode_array_loaded; DCHECK_EQ(Smi::FromInt(0), DebugInfo::uninitialized()); __ cmpp(FieldOperand(rax, SharedFunctionInfo::kDebugInfoOffset), Immediate(0)); __ j(not_equal, &load_debug_bytecode_array); __ movp(kInterpreterBytecodeArrayRegister, FieldOperand(rax, SharedFunctionInfo::kFunctionDataOffset)); __ bind(&bytecode_array_loaded); // Check function data field is actually a BytecodeArray object. Label bytecode_array_not_present; __ CompareRoot(kInterpreterBytecodeArrayRegister, Heap::kUndefinedValueRootIndex); __ j(equal, &bytecode_array_not_present); if (FLAG_debug_code) { __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, rax); __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Load initial bytecode offset. __ movp(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push bytecode array and Smi tagged bytecode offset. __ Push(kInterpreterBytecodeArrayRegister); __ Integer32ToSmi(rcx, kInterpreterBytecodeOffsetRegister); __ Push(rcx); // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ movp(rdx, rsp); __ subp(rdx, rcx); __ CompareRoot(rdx, Heap::kRealStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(always, &loop_check); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ Push(rdx); // Continue loop if not done. __ bind(&loop_check); __ subp(rcx, Immediate(kPointerSize)); __ j(greater_equal, &loop_header, Label::kNear); } // Load accumulator and dispatch table into registers. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Dispatch to the first bytecode handler for the function. __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx, times_pointer_size, 0)); __ call(rbx); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // The return value is in rax. LeaveInterpreterFrame(masm, rbx, rcx); __ ret(0); // Load debug copy of the bytecode array. __ bind(&load_debug_bytecode_array); Register debug_info = kInterpreterBytecodeArrayRegister; __ movp(debug_info, FieldOperand(rax, SharedFunctionInfo::kDebugInfoOffset)); __ movp(kInterpreterBytecodeArrayRegister, FieldOperand(debug_info, DebugInfo::kAbstractCodeIndex)); __ jmp(&bytecode_array_loaded); // If the bytecode array is no longer present, then the underlying function // has been switched to a different kind of code and we heal the closure by // switching the code entry field over to the new code object as well. __ bind(&bytecode_array_not_present); __ leave(); // Leave the frame so we can tail call. __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kCodeOffset)); __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); __ movp(FieldOperand(rdi, JSFunction::kCodeEntryOffset), rcx); __ RecordWriteCodeEntryField(rdi, rcx, r15); __ jmp(rcx); } void Builtins::Generate_InterpreterMarkBaselineOnReturn(MacroAssembler* masm) { // Save the function and context for call to CompileBaseline. __ movp(rdi, Operand(rbp, StandardFrameConstants::kFunctionOffset)); __ movp(kContextRegister, Operand(rbp, StandardFrameConstants::kContextOffset)); // Leave the frame before recompiling for baseline so that we don't count as // an activation on the stack. LeaveInterpreterFrame(masm, rbx, rcx); { FrameScope frame_scope(masm, StackFrame::INTERNAL); // Push return value. __ Push(rax); // Push function as argument and compile for baseline. __ Push(rdi); __ CallRuntime(Runtime::kCompileBaseline); // Restore return value. __ Pop(rax); } __ ret(0); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, bool push_receiver) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rbx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- // Find the address of the last argument. __ movp(rcx, rax); if (push_receiver) { __ addp(rcx, Immediate(1)); // Add one for receiver. } __ shlp(rcx, Immediate(kPointerSizeLog2)); __ negp(rcx); __ addp(rcx, rbx); // Push the arguments. Label loop_header, loop_check; __ j(always, &loop_check); __ bind(&loop_header); __ Push(Operand(rbx, 0)); __ subp(rbx, Immediate(kPointerSize)); __ bind(&loop_check); __ cmpp(rbx, rcx); __ j(greater, &loop_header, Label::kNear); } // static void Builtins::Generate_InterpreterPushArgsAndCallImpl( MacroAssembler* masm, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rbx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- rdi : the target to call (can be any Object). // ----------------------------------- // Pop return address to allow tail-call after pushing arguments. __ PopReturnAddressTo(kScratchRegister); Generate_InterpreterPushArgs(masm, true); // Call the target. __ PushReturnAddressFrom(kScratchRegister); // Re-push return address. __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny, tail_call_mode), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- rdi : the constructor to call (can be any Object) // -- rbx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- // Pop return address to allow tail-call after pushing arguments. __ PopReturnAddressTo(kScratchRegister); // Push slot for the receiver to be constructed. __ Push(Immediate(0)); Generate_InterpreterPushArgs(masm, false); // Push return address in preparation for the tail-call. __ PushReturnAddressFrom(kScratchRegister); // Call the constructor (rax, rdx, rdi passed on). __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::FromInt(0)); __ Move(rbx, masm->isolate()->builtins()->InterpreterEntryTrampoline()); __ addp(rbx, Immediate(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); __ Push(rbx); // Initialize dispatch table register. __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Get the bytecode array pointer from the frame. __ movp(kInterpreterBytecodeArrayRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, rbx); __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ movp(kInterpreterBytecodeOffsetRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiToInteger32(kInterpreterBytecodeOffsetRegister, kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx, times_pointer_size, 0)); __ jmp(rbx); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argument count (preserved for callee) // -- rdx : new target (preserved for callee) // -- rdi : target function (preserved for callee) // ----------------------------------- // First lookup code, maybe we don't need to compile! Label gotta_call_runtime; Label maybe_call_runtime; Label try_shared; Label loop_top, loop_bottom; Register closure = rdi; Register map = r8; Register index = r9; __ movp(map, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ movp(map, FieldOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset)); __ SmiToInteger32(index, FieldOperand(map, FixedArray::kLengthOffset)); __ cmpl(index, Immediate(2)); __ j(less, &gotta_call_runtime); // Find literals. // r14 : native context // r9 : length / index // r8 : optimized code map // rdx : new target // rdi : closure Register native_context = r14; __ movp(native_context, NativeContextOperand()); __ bind(&loop_top); // Native context match? Register temp = r11; __ movp(temp, FieldOperand(map, index, times_pointer_size, SharedFunctionInfo::kOffsetToPreviousContext)); __ movp(temp, FieldOperand(temp, WeakCell::kValueOffset)); __ cmpp(temp, native_context); __ j(not_equal, &loop_bottom); // OSR id set to none? __ movp(temp, FieldOperand(map, index, times_pointer_size, SharedFunctionInfo::kOffsetToPreviousOsrAstId)); __ SmiToInteger32(temp, temp); const int bailout_id = BailoutId::None().ToInt(); __ cmpl(temp, Immediate(bailout_id)); __ j(not_equal, &loop_bottom); // Literals available? Label got_literals, maybe_cleared_weakcell; __ movp(temp, FieldOperand(map, index, times_pointer_size, SharedFunctionInfo::kOffsetToPreviousLiterals)); // temp contains either a WeakCell pointing to the literals array or the // literals array directly. STATIC_ASSERT(WeakCell::kValueOffset == FixedArray::kLengthOffset); __ movp(r15, FieldOperand(temp, WeakCell::kValueOffset)); __ JumpIfSmi(r15, &maybe_cleared_weakcell); // r15 is a pointer, therefore temp is a WeakCell pointing to a literals // array. __ movp(temp, FieldOperand(temp, WeakCell::kValueOffset)); __ jmp(&got_literals); // r15 is a smi. If it's 0, then we are looking at a cleared WeakCell // around the literals array, and we should visit the runtime. If it's > 0, // then temp already contains the literals array. __ bind(&maybe_cleared_weakcell); __ cmpp(r15, Immediate(0)); __ j(equal, &gotta_call_runtime); // Save the literals in the closure. __ bind(&got_literals); __ movp(FieldOperand(closure, JSFunction::kLiteralsOffset), temp); __ movp(r15, index); __ RecordWriteField(closure, JSFunction::kLiteralsOffset, temp, r15, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Code available? Register entry = rcx; __ movp(entry, FieldOperand(map, index, times_pointer_size, SharedFunctionInfo::kOffsetToPreviousCachedCode)); __ movp(entry, FieldOperand(entry, WeakCell::kValueOffset)); __ JumpIfSmi(entry, &maybe_call_runtime); // Found literals and code. Get them into the closure and return. __ leap(entry, FieldOperand(entry, Code::kHeaderSize)); Label install_optimized_code_and_tailcall; __ bind(&install_optimized_code_and_tailcall); __ movp(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry); __ RecordWriteCodeEntryField(closure, entry, r15); // Link the closure into the optimized function list. // rcx : code entry (entry) // r14 : native context // rdx : new target // rdi : closure __ movp(rbx, ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST)); __ movp(FieldOperand(closure, JSFunction::kNextFunctionLinkOffset), rbx); __ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, rbx, r15, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); const int function_list_offset = Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST); __ movp(ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST), closure); // Save closure before the write barrier. __ movp(rbx, closure); __ RecordWriteContextSlot(native_context, function_list_offset, closure, r15, kDontSaveFPRegs); __ movp(closure, rbx); __ jmp(entry); __ bind(&loop_bottom); __ subl(index, Immediate(SharedFunctionInfo::kEntryLength)); __ cmpl(index, Immediate(1)); __ j(greater, &loop_top); // We found neither literals nor code. __ jmp(&gotta_call_runtime); __ bind(&maybe_call_runtime); // Last possibility. Check the context free optimized code map entry. __ movp(entry, FieldOperand(map, FixedArray::kHeaderSize + SharedFunctionInfo::kSharedCodeIndex)); __ movp(entry, FieldOperand(entry, WeakCell::kValueOffset)); __ JumpIfSmi(entry, &try_shared); // Store code entry in the closure. __ leap(entry, FieldOperand(entry, Code::kHeaderSize)); __ jmp(&install_optimized_code_and_tailcall); __ bind(&try_shared); // Is the full code valid? __ movp(entry, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ movp(entry, FieldOperand(entry, SharedFunctionInfo::kCodeOffset)); __ movl(rbx, FieldOperand(entry, Code::kFlagsOffset)); __ andl(rbx, Immediate(Code::KindField::kMask)); __ shrl(rbx, Immediate(Code::KindField::kShift)); __ cmpl(rbx, Immediate(Code::BUILTIN)); __ j(equal, &gotta_call_runtime); // Yes, install the full code. __ leap(entry, FieldOperand(entry, Code::kHeaderSize)); __ movp(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry); __ RecordWriteCodeEntryField(closure, entry, r15); __ jmp(entry); __ bind(&gotta_call_runtime); GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); } void Builtins::Generate_CompileBaseline(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_NotConcurrent); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Re-execute the code that was patched back to the young age when // the stub returns. __ subp(Operand(rsp, 0), Immediate(5)); __ Pushad(); __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate())); __ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize)); { // NOLINT FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(2); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); } __ Popad(); __ ret(0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. __ Pushad(); __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate())); __ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize)); __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength)); { // NOLINT FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(2); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); } __ Popad(); // Perform prologue operations usually performed by the young code stub. __ PopReturnAddressTo(kScratchRegister); __ pushq(rbp); // Caller's frame pointer. __ movp(rbp, rsp); __ Push(rsi); // Callee's context. __ Push(rdi); // Callee's JS Function. __ PushReturnAddressFrom(kScratchRegister); // Jump to point after the code-age stub. __ ret(0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) { Generate_MarkCodeAsExecutedOnce(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ Pushad(); __ CallRuntime(Runtime::kNotifyStubFailure, save_doubles); __ Popad(); // Tear down internal frame. } __ DropUnderReturnAddress(1); // Ignore state offset __ ret(0); // Return to IC Miss stub, continuation still on stack. } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Pass the deoptimization type to the runtime system. __ Push(Smi::FromInt(static_cast<int>(type))); __ CallRuntime(Runtime::kNotifyDeoptimized); // Tear down internal frame. } // Get the full codegen state from the stack and untag it. __ SmiToInteger32(kScratchRegister, Operand(rsp, kPCOnStackSize)); // Switch on the state. Label not_no_registers, not_tos_rax; __ cmpp(kScratchRegister, Immediate(static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS))); __ j(not_equal, ¬_no_registers, Label::kNear); __ ret(1 * kPointerSize); // Remove state. __ bind(¬_no_registers); DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code()); __ movp(rax, Operand(rsp, kPCOnStackSize + kPointerSize)); __ cmpp(kScratchRegister, Immediate(static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER))); __ j(not_equal, ¬_tos_rax, Label::kNear); __ ret(2 * kPointerSize); // Remove state, rax. __ bind(¬_tos_rax); __ Abort(kNoCasesLeft); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } // static void Builtins::Generate_DatePrototype_GetField(MacroAssembler* masm, int field_index) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : function // -- rsi : context // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- // 1. Load receiver into rax and check that it's actually a JSDate object. Label receiver_not_date; { StackArgumentsAccessor args(rsp, 0); __ movp(rax, args.GetReceiverOperand()); __ JumpIfSmi(rax, &receiver_not_date); __ CmpObjectType(rax, JS_DATE_TYPE, rbx); __ j(not_equal, &receiver_not_date); } // 2. Load the specified date field, falling back to the runtime as necessary. if (field_index == JSDate::kDateValue) { __ movp(rax, FieldOperand(rax, JSDate::kValueOffset)); } else { if (field_index < JSDate::kFirstUncachedField) { Label stamp_mismatch; __ Load(rdx, ExternalReference::date_cache_stamp(masm->isolate())); __ cmpp(rdx, FieldOperand(rax, JSDate::kCacheStampOffset)); __ j(not_equal, &stamp_mismatch, Label::kNear); __ movp(rax, FieldOperand( rax, JSDate::kValueOffset + field_index * kPointerSize)); __ ret(1 * kPointerSize); __ bind(&stamp_mismatch); } FrameScope scope(masm, StackFrame::INTERNAL); __ PrepareCallCFunction(2); __ Move(arg_reg_1, rax); __ Move(arg_reg_2, Smi::FromInt(field_index)); __ CallCFunction( ExternalReference::get_date_field_function(masm->isolate()), 2); } __ ret(1 * kPointerSize); // 3. Raise a TypeError if the receiver is not a date. __ bind(&receiver_not_date); { FrameScope scope(masm, StackFrame::MANUAL); __ Push(rbp); __ Move(rbp, rsp); __ Push(rsi); __ Push(rdi); __ Push(Immediate(0)); __ CallRuntime(Runtime::kThrowNotDateError); } } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : argArray // -- rsp[16] : thisArg // -- rsp[24] : receiver // ----------------------------------- // 1. Load receiver into rdi, argArray into rax (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label no_arg_array, no_this_arg; StackArgumentsAccessor args(rsp, rax); __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ movp(rbx, rdx); __ movp(rdi, args.GetReceiverOperand()); __ testp(rax, rax); __ j(zero, &no_this_arg, Label::kNear); { __ movp(rdx, args.GetArgumentOperand(1)); __ cmpp(rax, Immediate(1)); __ j(equal, &no_arg_array, Label::kNear); __ movp(rbx, args.GetArgumentOperand(2)); __ bind(&no_arg_array); } __ bind(&no_this_arg); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ Push(rdx); __ PushReturnAddressFrom(rcx); __ movp(rax, rbx); } // ----------- S t a t e ------------- // -- rax : argArray // -- rdi : receiver // -- rsp[0] : return address // -- rsp[8] : thisArg // ----------------------------------- // 2. Make sure the receiver is actually callable. Label receiver_not_callable; __ JumpIfSmi(rdi, &receiver_not_callable, Label::kNear); __ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset)); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsCallable)); __ j(zero, &receiver_not_callable, Label::kNear); // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(rax, Heap::kNullValueRootIndex, &no_arguments, Label::kNear); __ JumpIfRoot(rax, Heap::kUndefinedValueRootIndex, &no_arguments, Label::kNear); // 4a. Apply the receiver to the given argArray (passing undefined for // new.target). __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. Since we did not create a frame for // Function.prototype.apply() yet, we use a normal Call builtin here. __ bind(&no_arguments); { __ Set(rax, 0); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // 4c. The receiver is not callable, throw an appropriate TypeError. __ bind(&receiver_not_callable); { StackArgumentsAccessor args(rsp, 0); __ movp(args.GetReceiverOperand(), rdi); __ TailCallRuntime(Runtime::kThrowApplyNonFunction); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // Stack Layout: // rsp[0] : Return address // rsp[8] : Argument n // rsp[16] : Argument n-1 // ... // rsp[8 * n] : Argument 1 // rsp[8 * (n + 1)] : Receiver (callable to call) // // rax contains the number of arguments, n, not counting the receiver. // // 1. Make sure we have at least one argument. { Label done; __ testp(rax, rax); __ j(not_zero, &done, Label::kNear); __ PopReturnAddressTo(rbx); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(rbx); __ incp(rax); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. { StackArgumentsAccessor args(rsp, rax); __ movp(rdi, args.GetReceiverOperand()); } // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. { Label loop; __ movp(rcx, rax); StackArgumentsAccessor args(rsp, rcx); __ bind(&loop); __ movp(rbx, args.GetArgumentOperand(1)); __ movp(args.GetArgumentOperand(0), rbx); __ decp(rcx); __ j(not_zero, &loop); // While non-zero. __ DropUnderReturnAddress(1, rbx); // Drop one slot under return address. __ decp(rax); // One fewer argument (first argument is new receiver). } // 4. Call the callable. // Since we did not create a frame for Function.prototype.call() yet, // we use a normal Call builtin here. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : argumentsList // -- rsp[16] : thisArgument // -- rsp[24] : target // -- rsp[32] : receiver // ----------------------------------- // 1. Load target into rdi (if present), argumentsList into rax (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label done; StackArgumentsAccessor args(rsp, rax); __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); __ movp(rdx, rdi); __ movp(rbx, rdi); __ cmpp(rax, Immediate(1)); __ j(below, &done, Label::kNear); __ movp(rdi, args.GetArgumentOperand(1)); // target __ j(equal, &done, Label::kNear); __ movp(rdx, args.GetArgumentOperand(2)); // thisArgument __ cmpp(rax, Immediate(3)); __ j(below, &done, Label::kNear); __ movp(rbx, args.GetArgumentOperand(3)); // argumentsList __ bind(&done); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ Push(rdx); __ PushReturnAddressFrom(rcx); __ movp(rax, rbx); } // ----------- S t a t e ------------- // -- rax : argumentsList // -- rdi : target // -- rsp[0] : return address // -- rsp[8] : thisArgument // ----------------------------------- // 2. Make sure the target is actually callable. Label target_not_callable; __ JumpIfSmi(rdi, &target_not_callable, Label::kNear); __ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset)); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsCallable)); __ j(zero, &target_not_callable, Label::kNear); // 3a. Apply the target to the given argumentsList (passing undefined for // new.target). __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 3b. The target is not callable, throw an appropriate TypeError. __ bind(&target_not_callable); { StackArgumentsAccessor args(rsp, 0); __ movp(args.GetReceiverOperand(), rdi); __ TailCallRuntime(Runtime::kThrowApplyNonFunction); } } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : new.target (optional) // -- rsp[16] : argumentsList // -- rsp[24] : target // -- rsp[32] : receiver // ----------------------------------- // 1. Load target into rdi (if present), argumentsList into rax (if present), // new.target into rdx (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label done; StackArgumentsAccessor args(rsp, rax); __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); __ movp(rdx, rdi); __ movp(rbx, rdi); __ cmpp(rax, Immediate(1)); __ j(below, &done, Label::kNear); __ movp(rdi, args.GetArgumentOperand(1)); // target __ movp(rdx, rdi); // new.target defaults to target __ j(equal, &done, Label::kNear); __ movp(rbx, args.GetArgumentOperand(2)); // argumentsList __ cmpp(rax, Immediate(3)); __ j(below, &done, Label::kNear); __ movp(rdx, args.GetArgumentOperand(3)); // new.target __ bind(&done); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(rcx); __ movp(rax, rbx); } // ----------- S t a t e ------------- // -- rax : argumentsList // -- rdx : new.target // -- rdi : target // -- rsp[0] : return address // -- rsp[8] : receiver (undefined) // ----------------------------------- // 2. Make sure the target is actually a constructor. Label target_not_constructor; __ JumpIfSmi(rdi, &target_not_constructor, Label::kNear); __ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset)); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsConstructor)); __ j(zero, &target_not_constructor, Label::kNear); // 3. Make sure the target is actually a constructor. Label new_target_not_constructor; __ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear); __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsConstructor)); __ j(zero, &new_target_not_constructor, Label::kNear); // 4a. Construct the target with the given new.target and argumentsList. __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 4b. The target is not a constructor, throw an appropriate TypeError. __ bind(&target_not_constructor); { StackArgumentsAccessor args(rsp, 0); __ movp(args.GetReceiverOperand(), rdi); __ TailCallRuntime(Runtime::kThrowCalledNonCallable); } // 4c. The new.target is not a constructor, throw an appropriate TypeError. __ bind(&new_target_not_constructor); { StackArgumentsAccessor args(rsp, 0); __ movp(args.GetReceiverOperand(), rdx); __ TailCallRuntime(Runtime::kThrowCalledNonCallable); } } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Label generic_array_code; // Get the InternalArray function. __ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ Check(not_smi, kUnexpectedInitialMapForInternalArrayFunction); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ Check(equal, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Label generic_array_code; // Get the Array function. __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, rdi); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ Check(not_smi, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ Check(equal, kUnexpectedInitialMapForArrayFunction); } __ movp(rdx, rdi); // Run the native code for the Array function called as a normal function. // tail call a stub __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } // static void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : function // -- rsi : context // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- Condition const cc = (kind == MathMaxMinKind::kMin) ? below : above; Heap::RootListIndex const root_index = (kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex : Heap::kMinusInfinityValueRootIndex; XMMRegister const reg = (kind == MathMaxMinKind::kMin) ? xmm1 : xmm0; // Load the accumulator with the default return value (either -Infinity or // +Infinity), with the tagged value in rdx and the double value in xmm0. __ LoadRoot(rdx, root_index); __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); __ Move(rcx, rax); Label done_loop, loop; __ bind(&loop); { // Check if all parameters done. __ testp(rcx, rcx); __ j(zero, &done_loop); // Load the next parameter tagged value into rbx. __ movp(rbx, Operand(rsp, rcx, times_pointer_size, 0)); // Load the double value of the parameter into xmm1, maybe converting the // parameter to a number first using the ToNumber builtin if necessary. Label convert, convert_smi, convert_number, done_convert; __ bind(&convert); __ JumpIfSmi(rbx, &convert_smi); __ JumpIfRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex, &convert_number); { // Parameter is not a Number, use the ToNumber builtin to convert it. FrameScope scope(masm, StackFrame::MANUAL); __ Push(rbp); __ Move(rbp, rsp); __ Push(rsi); __ Push(rdi); __ Integer32ToSmi(rax, rax); __ Integer32ToSmi(rcx, rcx); __ Push(rax); __ Push(rcx); __ Push(rdx); __ movp(rax, rbx); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ movp(rbx, rax); __ Pop(rdx); __ Pop(rcx); __ Pop(rax); __ Pop(rdi); __ Pop(rsi); { // Restore the double accumulator value (xmm0). Label restore_smi, done_restore; __ JumpIfSmi(rdx, &restore_smi, Label::kNear); __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); __ jmp(&done_restore, Label::kNear); __ bind(&restore_smi); __ SmiToDouble(xmm0, rdx); __ bind(&done_restore); } __ SmiToInteger32(rcx, rcx); __ SmiToInteger32(rax, rax); __ leave(); } __ jmp(&convert); __ bind(&convert_number); __ Movsd(xmm1, FieldOperand(rbx, HeapNumber::kValueOffset)); __ jmp(&done_convert, Label::kNear); __ bind(&convert_smi); __ SmiToDouble(xmm1, rbx); __ bind(&done_convert); // Perform the actual comparison with the accumulator value on the left hand // side (xmm0) and the next parameter value on the right hand side (xmm1). Label compare_equal, compare_nan, compare_swap, done_compare; __ Ucomisd(xmm0, xmm1); __ j(parity_even, &compare_nan, Label::kNear); __ j(cc, &done_compare, Label::kNear); __ j(equal, &compare_equal, Label::kNear); // Result is on the right hand side. __ bind(&compare_swap); __ Movaps(xmm0, xmm1); __ Move(rdx, rbx); __ jmp(&done_compare, Label::kNear); // At least one side is NaN, which means that the result will be NaN too. __ bind(&compare_nan); __ LoadRoot(rdx, Heap::kNanValueRootIndex); __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); __ jmp(&done_compare, Label::kNear); // Left and right hand side are equal, check for -0 vs. +0. __ bind(&compare_equal); __ Movmskpd(kScratchRegister, reg); __ testl(kScratchRegister, Immediate(1)); __ j(not_zero, &compare_swap); __ bind(&done_compare); __ decp(rcx); __ jmp(&loop); } __ bind(&done_loop); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(rcx); __ movp(rax, rdx); __ Ret(); } // static void Builtins::Generate_NumberConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : constructor function // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // 1. Load the first argument into rax and get rid of the rest (including the // receiver). Label no_arguments; { StackArgumentsAccessor args(rsp, rax); __ testp(rax, rax); __ j(zero, &no_arguments, Label::kNear); __ movp(rbx, args.GetArgumentOperand(1)); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(rcx); __ movp(rax, rbx); } // 2a. Convert the first argument to a number. __ Jump(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); // 2b. No arguments, return +0 (already in rax). __ bind(&no_arguments); __ ret(1 * kPointerSize); } // static void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : constructor function // -- rdx : new target // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // 1. Make sure we operate in the context of the called function. __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // 2. Load the first argument into rbx and get rid of the rest (including the // receiver). { StackArgumentsAccessor args(rsp, rax); Label no_arguments, done; __ testp(rax, rax); __ j(zero, &no_arguments, Label::kNear); __ movp(rbx, args.GetArgumentOperand(1)); __ jmp(&done, Label::kNear); __ bind(&no_arguments); __ Move(rbx, Smi::FromInt(0)); __ bind(&done); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(rcx); } // 3. Make sure rbx is a number. { Label done_convert; __ JumpIfSmi(rbx, &done_convert); __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(equal, &done_convert); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdx); __ Push(rdi); __ Move(rax, rbx); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ Move(rbx, rax); __ Pop(rdi); __ Pop(rdx); } __ bind(&done_convert); } // 4. Check if new target and constructor differ. Label new_object; __ cmpp(rdx, rdi); __ j(not_equal, &new_object); // 5. Allocate a JSValue wrapper for the number. __ AllocateJSValue(rax, rdi, rbx, rcx, &new_object); __ Ret(); // 6. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rbx); // the first argument FastNewObjectStub stub(masm->isolate()); __ CallStub(&stub); __ Pop(FieldOperand(rax, JSValue::kValueOffset)); } __ Ret(); } // static void Builtins::Generate_StringConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : constructor function // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // 1. Load the first argument into rax and get rid of the rest (including the // receiver). Label no_arguments; { StackArgumentsAccessor args(rsp, rax); __ testp(rax, rax); __ j(zero, &no_arguments, Label::kNear); __ movp(rbx, args.GetArgumentOperand(1)); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(rcx); __ movp(rax, rbx); } // 2a. At least one argument, return rax if it's a string, otherwise // dispatch to appropriate conversion. Label to_string, symbol_descriptive_string; { __ JumpIfSmi(rax, &to_string, Label::kNear); STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE); __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx); __ j(above, &to_string, Label::kNear); __ j(equal, &symbol_descriptive_string, Label::kNear); __ Ret(); } // 2b. No arguments, return the empty string (and pop the receiver). __ bind(&no_arguments); { __ LoadRoot(rax, Heap::kempty_stringRootIndex); __ ret(1 * kPointerSize); } // 3a. Convert rax to a string. __ bind(&to_string); { ToStringStub stub(masm->isolate()); __ TailCallStub(&stub); } // 3b. Convert symbol in rax to a string. __ bind(&symbol_descriptive_string); { __ PopReturnAddressTo(rcx); __ Push(rax); __ PushReturnAddressFrom(rcx); __ TailCallRuntime(Runtime::kSymbolDescriptiveString); } } // static void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : constructor function // -- rdx : new target // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // 1. Make sure we operate in the context of the called function. __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // 2. Load the first argument into rbx and get rid of the rest (including the // receiver). { StackArgumentsAccessor args(rsp, rax); Label no_arguments, done; __ testp(rax, rax); __ j(zero, &no_arguments, Label::kNear); __ movp(rbx, args.GetArgumentOperand(1)); __ jmp(&done, Label::kNear); __ bind(&no_arguments); __ LoadRoot(rbx, Heap::kempty_stringRootIndex); __ bind(&done); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(rcx); } // 3. Make sure rbx is a string. { Label convert, done_convert; __ JumpIfSmi(rbx, &convert, Label::kNear); __ CmpObjectType(rbx, FIRST_NONSTRING_TYPE, rcx); __ j(below, &done_convert); __ bind(&convert); { FrameScope scope(masm, StackFrame::INTERNAL); ToStringStub stub(masm->isolate()); __ Push(rdx); __ Push(rdi); __ Move(rax, rbx); __ CallStub(&stub); __ Move(rbx, rax); __ Pop(rdi); __ Pop(rdx); } __ bind(&done_convert); } // 4. Check if new target and constructor differ. Label new_object; __ cmpp(rdx, rdi); __ j(not_equal, &new_object); // 5. Allocate a JSValue wrapper for the string. __ AllocateJSValue(rax, rdi, rbx, rcx, &new_object); __ Ret(); // 6. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rbx); // the first argument FastNewObjectStub stub(masm->isolate()); __ CallStub(&stub); __ Pop(FieldOperand(rax, JSValue::kValueOffset)); } __ Ret(); } static void ArgumentsAdaptorStackCheck(MacroAssembler* masm, Label* stack_overflow) { // ----------- S t a t e ------------- // -- rax : actual number of arguments // -- rbx : expected number of arguments // -- rdx : new target (passed through to callee) // -- rdi : function (passed through to callee) // ----------------------------------- // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(r8, Heap::kRealStackLimitRootIndex); __ movp(rcx, rsp); // Make rcx the space we have left. The stack might already be overflowed // here which will cause rcx to become negative. __ subp(rcx, r8); // Make r8 the space we need for the array when it is unrolled onto the // stack. __ movp(r8, rbx); __ shlp(r8, Immediate(kPointerSizeLog2)); // Check if the arguments will overflow the stack. __ cmpp(rcx, r8); __ j(less_equal, stack_overflow); // Signed comparison. } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ pushq(rbp); __ movp(rbp, rsp); // Store the arguments adaptor context sentinel. __ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); // Push the function on the stack. __ Push(rdi); // Preserve the number of arguments on the stack. Must preserve rax, // rbx and rcx because these registers are used when copying the // arguments and the receiver. __ Integer32ToSmi(r8, rax); __ Push(r8); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. Number is a Smi. __ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ movp(rsp, rbp); __ popq(rbp); // Remove caller arguments from the stack. __ PopReturnAddressTo(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ PushReturnAddressFrom(rcx); } // static void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rdx : requested object size (untagged) // -- rsp[0] : return address // ----------------------------------- __ Integer32ToSmi(rdx, rdx); __ PopReturnAddressTo(rcx); __ Push(rdx); __ PushReturnAddressFrom(rcx); __ Move(rsi, Smi::FromInt(0)); __ TailCallRuntime(Runtime::kAllocateInNewSpace); } // static void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rdx : requested object size (untagged) // -- rsp[0] : return address // ----------------------------------- __ Integer32ToSmi(rdx, rdx); __ PopReturnAddressTo(rcx); __ Push(rdx); __ Push(Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE))); __ PushReturnAddressFrom(rcx); __ Move(rsi, Smi::FromInt(0)); __ TailCallRuntime(Runtime::kAllocateInTargetSpace); } void Builtins::Generate_StringToNumber(MacroAssembler* masm) { // The StringToNumber stub takes one argument in rax. __ AssertString(rax); // Check if string has a cached array index. Label runtime; __ testl(FieldOperand(rax, String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); __ j(not_zero, &runtime, Label::kNear); __ movl(rax, FieldOperand(rax, String::kHashFieldOffset)); __ IndexFromHash(rax, rax); __ Ret(); __ bind(&runtime); { FrameScope frame(masm, StackFrame::INTERNAL); // Push argument. __ Push(rax); // We cannot use a tail call here because this builtin can also be called // from wasm. __ CallRuntime(Runtime::kStringToNumber); } __ Ret(); } // static void Builtins::Generate_ToNumber(MacroAssembler* masm) { // The ToNumber stub takes one argument in rax. Label not_smi; __ JumpIfNotSmi(rax, ¬_smi, Label::kNear); __ Ret(); __ bind(¬_smi); Label not_heap_number; __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, ¬_heap_number, Label::kNear); __ Ret(); __ bind(¬_heap_number); __ Jump(masm->isolate()->builtins()->NonNumberToNumber(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_NonNumberToNumber(MacroAssembler* masm) { // The NonNumberToNumber stub takes one argument in rax. __ AssertNotNumber(rax); Label not_string; __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdi); // rax: object // rdi: object map __ j(above_equal, ¬_string, Label::kNear); __ Jump(masm->isolate()->builtins()->StringToNumber(), RelocInfo::CODE_TARGET); __ bind(¬_string); Label not_oddball; __ CmpInstanceType(rdi, ODDBALL_TYPE); __ j(not_equal, ¬_oddball, Label::kNear); __ movp(rax, FieldOperand(rax, Oddball::kToNumberOffset)); __ Ret(); __ bind(¬_oddball); { FrameScope frame(masm, StackFrame::INTERNAL); // Push argument. __ Push(rax); // We cannot use a tail call here because this builtin can also be called // from wasm. __ CallRuntime(Runtime::kToNumber); } __ Ret(); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : actual number of arguments // -- rbx : expected number of arguments // -- rdx : new target (passed through to callee) // -- rdi : function (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->arguments_adaptors(), 1); Label enough, too_few; __ cmpp(rax, rbx); __ j(less, &too_few); __ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ j(equal, &dont_adapt_arguments); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); ArgumentsAdaptorStackCheck(masm, &stack_overflow); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ leap(rax, Operand(rbp, rax, times_pointer_size, offset)); __ Set(r8, -1); // account for receiver Label copy; __ bind(©); __ incp(r8); __ Push(Operand(rax, 0)); __ subp(rax, Immediate(kPointerSize)); __ cmpp(r8, rbx); __ j(less, ©); __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); ArgumentsAdaptorStackCheck(masm, &stack_overflow); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ leap(rdi, Operand(rbp, rax, times_pointer_size, offset)); __ Set(r8, -1); // account for receiver Label copy; __ bind(©); __ incp(r8); __ Push(Operand(rdi, 0)); __ subp(rdi, Immediate(kPointerSize)); __ cmpp(r8, rax); __ j(less, ©); // Fill remaining expected arguments with undefined values. Label fill; __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ bind(&fill); __ incp(r8); __ Push(kScratchRegister); __ cmpp(r8, rbx); __ j(less, &fill); // Restore function pointer. __ movp(rdi, Operand(rbp, ArgumentsAdaptorFrameConstants::kFunctionOffset)); } // Call the entry point. __ bind(&invoke); __ movp(rax, rbx); // rax : expected number of arguments // rdx : new target (passed through to callee) // rdi : function (passed through to callee) __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); __ call(rcx); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); __ jmp(rcx); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); } } // static void Builtins::Generate_Apply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argumentsList // -- rdi : target // -- rdx : new.target (checked to be constructor or undefined) // -- rsp[0] : return address. // -- rsp[8] : thisArgument // ----------------------------------- // Create the list of arguments from the array-like argumentsList. { Label create_arguments, create_array, create_runtime, done_create; __ JumpIfSmi(rax, &create_runtime); // Load the map of argumentsList into rcx. __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset)); // Load native context into rbx. __ movp(rbx, NativeContextOperand()); // Check if argumentsList is an (unmodified) arguments object. __ cmpp(rcx, ContextOperand(rbx, Context::SLOPPY_ARGUMENTS_MAP_INDEX)); __ j(equal, &create_arguments); __ cmpp(rcx, ContextOperand(rbx, Context::STRICT_ARGUMENTS_MAP_INDEX)); __ j(equal, &create_arguments); // Check if argumentsList is a fast JSArray. __ CmpInstanceType(rcx, JS_ARRAY_TYPE); __ j(equal, &create_array); // Ask the runtime to create the list (actually a FixedArray). __ bind(&create_runtime); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdi); __ Push(rdx); __ Push(rax); __ CallRuntime(Runtime::kCreateListFromArrayLike); __ Pop(rdx); __ Pop(rdi); __ SmiToInteger32(rbx, FieldOperand(rax, FixedArray::kLengthOffset)); } __ jmp(&done_create); // Try to create the list from an arguments object. __ bind(&create_arguments); __ movp(rbx, FieldOperand(rax, JSArgumentsObject::kLengthOffset)); __ movp(rcx, FieldOperand(rax, JSObject::kElementsOffset)); __ cmpp(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ j(not_equal, &create_runtime); __ SmiToInteger32(rbx, rbx); __ movp(rax, rcx); __ jmp(&done_create); // Try to create the list from a JSArray object. __ bind(&create_array); __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset)); __ DecodeField<Map::ElementsKindBits>(rcx); STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); __ cmpl(rcx, Immediate(FAST_ELEMENTS)); __ j(above, &create_runtime); __ cmpl(rcx, Immediate(FAST_HOLEY_SMI_ELEMENTS)); __ j(equal, &create_runtime); __ SmiToInteger32(rbx, FieldOperand(rax, JSArray::kLengthOffset)); __ movp(rax, FieldOperand(rax, JSArray::kElementsOffset)); __ bind(&done_create); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); __ movp(rcx, rsp); // Make rcx the space we have left. The stack might already be overflowed // here which will cause rcx to become negative. __ subp(rcx, kScratchRegister); __ sarp(rcx, Immediate(kPointerSizeLog2)); // Check if the arguments will overflow the stack. __ cmpp(rcx, rbx); __ j(greater, &done, Label::kNear); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // ----------- S t a t e ------------- // -- rdi : target // -- rax : args (a FixedArray built from argumentsList) // -- rbx : len (number of elements to push from args) // -- rdx : new.target (checked to be constructor or undefined) // -- rsp[0] : return address. // -- rsp[8] : thisArgument // ----------------------------------- // Push arguments onto the stack (thisArgument is already on the stack). { __ PopReturnAddressTo(r8); __ Set(rcx, 0); Label done, loop; __ bind(&loop); __ cmpl(rcx, rbx); __ j(equal, &done, Label::kNear); __ Push( FieldOperand(rax, rcx, times_pointer_size, FixedArray::kHeaderSize)); __ incl(rcx); __ jmp(&loop); __ bind(&done); __ PushReturnAddressFrom(r8); __ Move(rax, rcx); } // Dispatch to Call or Construct depending on whether new.target is undefined. { __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(equal, masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } } namespace { // Drops top JavaScript frame and an arguments adaptor frame below it (if // present) preserving all the arguments prepared for current call. // Does nothing if debugger is currently active. // ES6 14.6.3. PrepareForTailCall // // Stack structure for the function g() tail calling f(): // // ------- Caller frame: ------- // | ... // | g()'s arg M // | ... // | g()'s arg 1 // | g()'s receiver arg // | g()'s caller pc // ------- g()'s frame: ------- // | g()'s caller fp <- fp // | g()'s context // | function pointer: g // | ------------------------- // | ... // | ... // | f()'s arg N // | ... // | f()'s arg 1 // | f()'s receiver arg // | f()'s caller pc <- sp // ---------------------- // void PrepareForTailCall(MacroAssembler* masm, Register args_reg, Register scratch1, Register scratch2, Register scratch3) { DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3)); Comment cmnt(masm, "[ PrepareForTailCall"); // Prepare for tail call only if ES2015 tail call elimination is active. Label done; ExternalReference is_tail_call_elimination_enabled = ExternalReference::is_tail_call_elimination_enabled_address( masm->isolate()); __ Move(kScratchRegister, is_tail_call_elimination_enabled); __ cmpb(Operand(kScratchRegister, 0), Immediate(0)); __ j(equal, &done); // Drop possible interpreter handler/stub frame. { Label no_interpreter_frame; __ Cmp(Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset), Smi::FromInt(StackFrame::STUB)); __ j(not_equal, &no_interpreter_frame, Label::kNear); __ movp(rbp, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ bind(&no_interpreter_frame); } // Check if next frame is an arguments adaptor frame. Register caller_args_count_reg = scratch1; Label no_arguments_adaptor, formal_parameter_count_loaded; __ movp(scratch2, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ Cmp(Operand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &no_arguments_adaptor, Label::kNear); // Drop current frame and load arguments count from arguments adaptor frame. __ movp(rbp, scratch2); __ SmiToInteger32( caller_args_count_reg, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ jmp(&formal_parameter_count_loaded, Label::kNear); __ bind(&no_arguments_adaptor); // Load caller's formal parameter count __ movp(scratch1, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movp(scratch1, FieldOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); __ LoadSharedFunctionInfoSpecialField( caller_args_count_reg, scratch1, SharedFunctionInfo::kFormalParameterCountOffset); __ bind(&formal_parameter_count_loaded); ParameterCount callee_args_count(args_reg); __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2, scratch3, ReturnAddressState::kOnStack); __ bind(&done); } } // namespace // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the function to call (checked to be a JSFunction) // ----------------------------------- StackArgumentsAccessor args(rsp, rax); __ AssertFunction(rdi); // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testb(FieldOperand(rdx, SharedFunctionInfo::kFunctionKindByteOffset), Immediate(SharedFunctionInfo::kClassConstructorBitsWithinByte)); __ j(not_zero, &class_constructor); // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // ----------------------------------- // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset == SharedFunctionInfo::kStrictModeByteOffset); __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset), Immediate((1 << SharedFunctionInfo::kNativeBitWithinByte) | (1 << SharedFunctionInfo::kStrictModeBitWithinByte))); __ j(not_zero, &done_convert); { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // -- rsi : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(rcx); } else { Label convert_to_object, convert_receiver; __ movp(rcx, args.GetReceiverOperand()); __ JumpIfSmi(rcx, &convert_to_object, Label::kNear); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx); __ j(above_equal, &done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(rcx, Heap::kUndefinedValueRootIndex, &convert_global_proxy, Label::kNear); __ JumpIfNotRoot(rcx, Heap::kNullValueRootIndex, &convert_to_object, Label::kNear); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(rcx); } __ jmp(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ Integer32ToSmi(rax, rax); __ Push(rax); __ Push(rdi); __ movp(rax, rcx); ToObjectStub stub(masm->isolate()); __ CallStub(&stub); __ movp(rcx, rax); __ Pop(rdi); __ Pop(rax); __ SmiToInteger32(rax, rax); } __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ movp(args.GetReceiverOperand(), rcx); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // -- rsi : the function context. // ----------------------------------- if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, rax, rbx, rcx, r8); } __ LoadSharedFunctionInfoSpecialField( rbx, rdx, SharedFunctionInfo::kFormalParameterCountOffset); ParameterCount actual(rax); ParameterCount expected(rbx); __ InvokeFunctionCode(rdi, no_reg, expected, actual, JUMP_FUNCTION, CheckDebugStepCallWrapper()); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ Push(rdi); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : new.target (only in case of [[Construct]]) // -- rdi : target (checked to be a JSBoundFunction) // ----------------------------------- // Load [[BoundArguments]] into rcx and length of that into rbx. Label no_bound_arguments; __ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); __ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ testl(rbx, rbx); __ j(zero, &no_bound_arguments); { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : new.target (only in case of [[Construct]]) // -- rdi : target (checked to be a JSBoundFunction) // -- rcx : the [[BoundArguments]] (implemented as FixedArray) // -- rbx : the number of [[BoundArguments]] (checked to be non-zero) // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ leap(kScratchRegister, Operand(rbx, times_pointer_size, 0)); __ subp(rsp, kScratchRegister); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". __ CompareRoot(rsp, Heap::kRealStackLimitRootIndex); __ j(greater, &done, Label::kNear); // Signed comparison. // Restore the stack pointer. __ leap(rsp, Operand(rsp, rbx, times_pointer_size, 0)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Adjust effective number of arguments to include return address. __ incl(rax); // Relocate arguments and return address down the stack. { Label loop; __ Set(rcx, 0); __ leap(rbx, Operand(rsp, rbx, times_pointer_size, 0)); __ bind(&loop); __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); __ movp(Operand(rsp, rcx, times_pointer_size, 0), kScratchRegister); __ incl(rcx); __ cmpl(rcx, rax); __ j(less, &loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop; __ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); __ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ bind(&loop); __ decl(rbx); __ movp(kScratchRegister, FieldOperand(rcx, rbx, times_pointer_size, FixedArray::kHeaderSize)); __ movp(Operand(rsp, rax, times_pointer_size, 0), kScratchRegister); __ leal(rax, Operand(rax, 1)); __ j(greater, &loop); } // Adjust effective number of arguments (rax contains the number of // arguments from the call plus return address plus the number of // [[BoundArguments]]), so we need to subtract one for the return address. __ decl(rax); } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(rdi); if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, rax, rbx, rcx, r8); } // Patch the receiver to [[BoundThis]]. StackArgumentsAccessor args(rsp, rax); __ movp(rbx, FieldOperand(rdi, JSBoundFunction::kBoundThisOffset)); __ movp(args.GetReceiverOperand(), rbx); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Load(rcx, ExternalReference(Builtins::kCall_ReceiverIsAny, masm->isolate())); __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); __ jmp(rcx); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the target to call (can be any Object) // ----------------------------------- StackArgumentsAccessor args(rsp, rax); Label non_callable, non_function, non_smi; __ JumpIfSmi(rdi, &non_callable); __ bind(&non_smi); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(equal, masm->isolate()->builtins()->CallFunction(mode, tail_call_mode), RelocInfo::CODE_TARGET); __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); __ j(equal, masm->isolate()->builtins()->CallBoundFunction(tail_call_mode), RelocInfo::CODE_TARGET); // Check if target has a [[Call]] internal method. __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsCallable)); __ j(zero, &non_callable); __ CmpInstanceType(rcx, JS_PROXY_TYPE); __ j(not_equal, &non_function); // 0. Prepare for tail call if necessary. if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, rax, rbx, rcx, r8); } // 1. Runtime fallback for Proxy [[Call]]. __ PopReturnAddressTo(kScratchRegister); __ Push(rdi); __ PushReturnAddressFrom(kScratchRegister); // Increase the arguments size to include the pushed function and the // existing receiver on the stack. __ addp(rax, Immediate(2)); // Tail-call to the runtime. __ JumpToExternalReference( ExternalReference(Runtime::kJSProxyCall, masm->isolate())); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver with the (original) target. __ movp(args.GetReceiverOperand(), rdi); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdi); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (checked to be a constructor) // -- rdi : the constructor to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(rdi); // Calling convention for function specific ConstructStubs require // rbx to contain either an AllocationSite or undefined. __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset)); __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); __ jmp(rcx); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (checked to be a constructor) // -- rdi : the constructor to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(rdi); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label done; __ cmpp(rdi, rdx); __ j(not_equal, &done, Label::kNear); __ movp(rdx, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&done); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Load(rcx, ExternalReference(Builtins::kConstruct, masm->isolate())); __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); __ jmp(rcx); } // static void Builtins::Generate_ConstructProxy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the constructor to call (checked to be a JSProxy) // -- rdx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Call into the Runtime for Proxy [[Construct]]. __ PopReturnAddressTo(kScratchRegister); __ Push(rdi); __ Push(rdx); __ PushReturnAddressFrom(kScratchRegister); // Include the pushed new_target, constructor and the receiver. __ addp(rax, Immediate(3)); __ JumpToExternalReference( ExternalReference(Runtime::kJSProxyConstruct, masm->isolate())); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- rdi : the constructor to call (can be any Object) // ----------------------------------- StackArgumentsAccessor args(rsp, rax); // Check if target is a Smi. Label non_constructor; __ JumpIfSmi(rdi, &non_constructor, Label::kNear); // Dispatch based on instance type. __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(equal, masm->isolate()->builtins()->ConstructFunction(), RelocInfo::CODE_TARGET); // Check if target has a [[Construct]] internal method. __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsConstructor)); __ j(zero, &non_constructor, Label::kNear); // Only dispatch to bound functions after checking whether they are // constructors. __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); __ j(equal, masm->isolate()->builtins()->ConstructBoundFunction(), RelocInfo::CODE_TARGET); // Only dispatch to proxies after checking whether they are constructors. __ CmpInstanceType(rcx, JS_PROXY_TYPE); __ j(equal, masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ movp(args.GetReceiverOperand(), rdi); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(), RelocInfo::CODE_TARGET); } static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver, Register function_template_info, Register scratch0, Register scratch1, Register scratch2, Label* receiver_check_failed) { Register signature = scratch0; Register map = scratch1; Register constructor = scratch2; // If there is no signature, return the holder. __ movp(signature, FieldOperand(function_template_info, FunctionTemplateInfo::kSignatureOffset)); __ CompareRoot(signature, Heap::kUndefinedValueRootIndex); Label receiver_check_passed; __ j(equal, &receiver_check_passed, Label::kNear); // Walk the prototype chain. __ movp(map, FieldOperand(receiver, HeapObject::kMapOffset)); Label prototype_loop_start; __ bind(&prototype_loop_start); // Get the constructor, if any. __ GetMapConstructor(constructor, map, kScratchRegister); __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE); Label next_prototype; __ j(not_equal, &next_prototype, Label::kNear); // Get the constructor's signature. Register type = constructor; __ movp(type, FieldOperand(constructor, JSFunction::kSharedFunctionInfoOffset)); __ movp(type, FieldOperand(type, SharedFunctionInfo::kFunctionDataOffset)); // Loop through the chain of inheriting function templates. Label function_template_loop; __ bind(&function_template_loop); // If the signatures match, we have a compatible receiver. __ cmpp(signature, type); __ j(equal, &receiver_check_passed, Label::kNear); // If the current type is not a FunctionTemplateInfo, load the next prototype // in the chain. __ JumpIfSmi(type, &next_prototype, Label::kNear); __ CmpObjectType(type, FUNCTION_TEMPLATE_INFO_TYPE, kScratchRegister); __ j(not_equal, &next_prototype, Label::kNear); // Otherwise load the parent function template and iterate. __ movp(type, FieldOperand(type, FunctionTemplateInfo::kParentTemplateOffset)); __ jmp(&function_template_loop, Label::kNear); // Load the next prototype. __ bind(&next_prototype); __ testq(FieldOperand(map, Map::kBitField3Offset), Immediate(Map::HasHiddenPrototype::kMask)); __ j(zero, receiver_check_failed); __ movp(receiver, FieldOperand(map, Map::kPrototypeOffset)); __ movp(map, FieldOperand(receiver, HeapObject::kMapOffset)); // Iterate. __ jmp(&prototype_loop_start, Label::kNear); __ bind(&receiver_check_passed); } void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments (not including the receiver) // -- rdi : callee // -- rsi : context // -- rsp[0] : return address // -- rsp[8] : last argument // -- ... // -- rsp[rax * 8] : first argument // -- rsp[(rax + 1) * 8] : receiver // ----------------------------------- StackArgumentsAccessor args(rsp, rax); // Load the FunctionTemplateInfo. __ movp(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(rbx, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset)); // Do the compatible receiver check. Label receiver_check_failed; __ movp(rcx, args.GetReceiverOperand()); CompatibleReceiverCheck(masm, rcx, rbx, rdx, r8, r9, &receiver_check_failed); // Get the callback offset from the FunctionTemplateInfo, and jump to the // beginning of the code. __ movp(rdx, FieldOperand(rbx, FunctionTemplateInfo::kCallCodeOffset)); __ movp(rdx, FieldOperand(rdx, CallHandlerInfo::kFastHandlerOffset)); __ addp(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(rdx); // Compatible receiver check failed: pop return address, arguments and // receiver and throw an Illegal Invocation exception. __ bind(&receiver_check_failed); __ PopReturnAddressTo(rbx); __ leap(rax, Operand(rax, times_pointer_size, 1 * kPointerSize)); __ addp(rsp, rax); __ PushReturnAddressFrom(rbx); { FrameScope scope(masm, StackFrame::INTERNAL); __ TailCallRuntime(Runtime::kThrowIllegalInvocation); } } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ Push(rax); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } Label skip; // If the code object is null, just return to the unoptimized code. __ cmpp(rax, Immediate(0)); __ j(not_equal, &skip, Label::kNear); __ ret(0); __ bind(&skip); // Load deoptimization data from the code object. __ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. __ SmiToInteger32(rbx, Operand(rbx, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag)); // Compute the target address = code_obj + header_size + osr_offset __ leap(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag)); // Overwrite the return address on the stack. __ movq(StackOperandForReturnAddress(0), rax); // And "return" to the OSR entry point of the function. __ ret(0); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X64