// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_TYPES_H_
#define V8_TYPES_H_
#include "src/conversions.h"
#include "src/handles.h"
#include "src/objects.h"
#include "src/ostreams.h"
namespace v8 {
namespace internal {
// SUMMARY
//
// A simple type system for compiler-internal use. It is based entirely on
// union types, and all subtyping hence amounts to set inclusion. Besides the
// obvious primitive types and some predefined unions, the type language also
// can express class types (a.k.a. specific maps) and singleton types (i.e.,
// concrete constants).
//
// Types consist of two dimensions: semantic (value range) and representation.
// Both are related through subtyping.
//
//
// SEMANTIC DIMENSION
//
// The following equations and inequations hold for the semantic axis:
//
// None <= T
// T <= Any
//
// Number = Signed32 \/ Unsigned32 \/ Double
// Smi <= Signed32
// Name = String \/ Symbol
// UniqueName = InternalizedString \/ Symbol
// InternalizedString < String
//
// Receiver = Object \/ Proxy
// Array < Object
// Function < Object
// RegExp < Object
// OtherUndetectable < Object
// DetectableReceiver = Receiver - OtherUndetectable
//
// Class(map) < T iff instance_type(map) < T
// Constant(x) < T iff instance_type(map(x)) < T
// Array(T) < Array
// Function(R, S, T0, T1, ...) < Function
// Context(T) < Internal
//
// Both structural Array and Function types are invariant in all parameters;
// relaxing this would make Union and Intersect operations more involved.
// There is no subtyping relation between Array, Function, or Context types
// and respective Constant types, since these types cannot be reconstructed
// for arbitrary heap values.
// Note also that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
// change! (Its instance type cannot, however.)
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
// but will hold once we implement direct proxies.
// However, we also define a 'temporal' variant of the subtyping relation that
// considers the _current_ state only, i.e., Constant(x) <_now Class(map(x)).
//
//
// REPRESENTATIONAL DIMENSION
//
// For the representation axis, the following holds:
//
// None <= R
// R <= Any
//
// UntaggedInt = UntaggedInt1 \/ UntaggedInt8 \/
// UntaggedInt16 \/ UntaggedInt32
// UntaggedFloat = UntaggedFloat32 \/ UntaggedFloat64
// UntaggedNumber = UntaggedInt \/ UntaggedFloat
// Untagged = UntaggedNumber \/ UntaggedPtr
// Tagged = TaggedInt \/ TaggedPtr
//
// Subtyping relates the two dimensions, for example:
//
// Number <= Tagged \/ UntaggedNumber
// Object <= TaggedPtr \/ UntaggedPtr
//
// That holds because the semantic type constructors defined by the API create
// types that allow for all possible representations, and dually, the ones for
// representation types initially include all semantic ranges. Representations
// can then e.g. be narrowed for a given semantic type using intersection:
//
// SignedSmall /\ TaggedInt (a 'smi')
// Number /\ TaggedPtr (a heap number)
//
//
// RANGE TYPES
//
// A range type represents a continuous integer interval by its minimum and
// maximum value. Either value may be an infinity, in which case that infinity
// itself is also included in the range. A range never contains NaN or -0.
//
// If a value v happens to be an integer n, then Constant(v) is considered a
// subtype of Range(n, n) (and therefore also a subtype of any larger range).
// In order to avoid large unions, however, it is usually a good idea to use
// Range rather than Constant.
//
//
// PREDICATES
//
// There are two main functions for testing types:
//
// T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2)
// T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
//
// Typically, the former is to be used to select representations (e.g., via
// T->Is(SignedSmall())), and the latter to check whether a specific case needs
// handling (e.g., via T->Maybe(Number())).
//
// There is no functionality to discover whether a type is a leaf in the
// lattice. That is intentional. It should always be possible to refine the
// lattice (e.g., splitting up number types further) without invalidating any
// existing assumptions or tests.
// Consequently, do not normally use Equals for type tests, always use Is!
//
// The NowIs operator implements state-sensitive subtying, as described above.
// Any compilation decision based on such temporary properties requires runtime
// guarding!
//
//
// PROPERTIES
//
// Various formal properties hold for constructors, operators, and predicates
// over types. For example, constructors are injective and subtyping is a
// complete partial order.
//
// See test/cctest/test-types.cc for a comprehensive executable specification,
// especially with respect to the properties of the more exotic 'temporal'
// constructors and predicates (those prefixed 'Now').
//
//
// IMPLEMENTATION
//
// Internally, all 'primitive' types, and their unions, are represented as
// bitsets. Bit 0 is reserved for tagging. Class is a heap pointer to the
// respective map. Only structured types require allocation.
// Note that the bitset representation is closed under both Union and Intersect.
// -----------------------------------------------------------------------------
// Values for bitset types
// clang-format off
#define MASK_BITSET_TYPE_LIST(V) \
V(Representation, 0xffc00000u) \
V(Semantic, 0x003ffffeu)
#define REPRESENTATION(k) ((k) & BitsetType::kRepresentation)
#define SEMANTIC(k) ((k) & BitsetType::kSemantic)
#define REPRESENTATION_BITSET_TYPE_LIST(V) \
V(None, 0) \
V(UntaggedBit, 1u << 22 | kSemantic) \
V(UntaggedIntegral8, 1u << 23 | kSemantic) \
V(UntaggedIntegral16, 1u << 24 | kSemantic) \
V(UntaggedIntegral32, 1u << 25 | kSemantic) \
V(UntaggedFloat32, 1u << 26 | kSemantic) \
V(UntaggedFloat64, 1u << 27 | kSemantic) \
V(UntaggedSimd128, 1u << 28 | kSemantic) \
V(UntaggedPointer, 1u << 29 | kSemantic) \
V(TaggedSigned, 1u << 30 | kSemantic) \
V(TaggedPointer, 1u << 31 | kSemantic) \
\
V(UntaggedIntegral, kUntaggedBit | kUntaggedIntegral8 | \
kUntaggedIntegral16 | kUntaggedIntegral32) \
V(UntaggedFloat, kUntaggedFloat32 | kUntaggedFloat64) \
V(UntaggedNumber, kUntaggedIntegral | kUntaggedFloat) \
V(Untagged, kUntaggedNumber | kUntaggedPointer) \
V(Tagged, kTaggedSigned | kTaggedPointer)
#define INTERNAL_BITSET_TYPE_LIST(V) \
V(OtherUnsigned31, 1u << 1 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(OtherUnsigned32, 1u << 2 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(OtherSigned32, 1u << 3 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(OtherNumber, 1u << 4 | REPRESENTATION(kTagged | kUntaggedNumber))
#define SEMANTIC_BITSET_TYPE_LIST(V) \
V(Negative31, 1u << 5 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(Null, 1u << 6 | REPRESENTATION(kTaggedPointer)) \
V(Undefined, 1u << 7 | REPRESENTATION(kTaggedPointer)) \
V(Boolean, 1u << 8 | REPRESENTATION(kTaggedPointer)) \
V(Unsigned30, 1u << 9 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(MinusZero, 1u << 10 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(NaN, 1u << 11 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(Symbol, 1u << 12 | REPRESENTATION(kTaggedPointer)) \
V(InternalizedString, 1u << 13 | REPRESENTATION(kTaggedPointer)) \
V(OtherString, 1u << 14 | REPRESENTATION(kTaggedPointer)) \
V(Simd, 1u << 15 | REPRESENTATION(kTaggedPointer)) \
V(OtherObject, 1u << 17 | REPRESENTATION(kTaggedPointer)) \
V(OtherUndetectable, 1u << 16 | REPRESENTATION(kTaggedPointer)) \
V(Proxy, 1u << 18 | REPRESENTATION(kTaggedPointer)) \
V(Function, 1u << 19 | REPRESENTATION(kTaggedPointer)) \
V(Internal, 1u << 20 | REPRESENTATION(kTagged | kUntagged)) \
\
V(Signed31, kUnsigned30 | kNegative31) \
V(Signed32, kSigned31 | kOtherUnsigned31 | kOtherSigned32) \
V(Negative32, kNegative31 | kOtherSigned32) \
V(Unsigned31, kUnsigned30 | kOtherUnsigned31) \
V(Unsigned32, kUnsigned30 | kOtherUnsigned31 | \
kOtherUnsigned32) \
V(Integral32, kSigned32 | kUnsigned32) \
V(PlainNumber, kIntegral32 | kOtherNumber) \
V(OrderedNumber, kPlainNumber | kMinusZero) \
V(MinusZeroOrNaN, kMinusZero | kNaN) \
V(Number, kOrderedNumber | kNaN) \
V(String, kInternalizedString | kOtherString) \
V(UniqueName, kSymbol | kInternalizedString) \
V(Name, kSymbol | kString) \
V(BooleanOrNumber, kBoolean | kNumber) \
V(BooleanOrNullOrUndefined, kBoolean | kNull | kUndefined) \
V(NullOrUndefined, kNull | kUndefined) \
V(Undetectable, kNullOrUndefined | kOtherUndetectable) \
V(NumberOrOddball, kNumber | kNullOrUndefined | kBoolean) \
V(NumberOrSimdOrString, kNumber | kSimd | kString) \
V(NumberOrString, kNumber | kString) \
V(NumberOrUndefined, kNumber | kUndefined) \
V(PlainPrimitive, kNumberOrString | kBoolean | kNullOrUndefined) \
V(Primitive, kSymbol | kSimd | kPlainPrimitive) \
V(DetectableReceiver, kFunction | kOtherObject | kProxy) \
V(Object, kFunction | kOtherObject | kOtherUndetectable) \
V(Receiver, kObject | kProxy) \
V(StringOrReceiver, kString | kReceiver) \
V(Unique, kBoolean | kUniqueName | kNull | kUndefined | \
kReceiver) \
V(NonInternal, kPrimitive | kReceiver) \
V(NonNumber, kUnique | kString | kInternal) \
V(Any, 0xfffffffeu)
// clang-format on
/*
* The following diagrams show how integers (in the mathematical sense) are
* divided among the different atomic numerical types.
*
* ON OS32 N31 U30 OU31 OU32 ON
* ______[_______[_______[_______[_______[_______[_______
* -2^31 -2^30 0 2^30 2^31 2^32
*
* E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1.
*
* Some of the atomic numerical bitsets are internal only (see
* INTERNAL_BITSET_TYPE_LIST). To a types user, they should only occur in
* union with certain other bitsets. For instance, OtherNumber should only
* occur as part of PlainNumber.
*/
#define PROPER_BITSET_TYPE_LIST(V) \
REPRESENTATION_BITSET_TYPE_LIST(V) \
SEMANTIC_BITSET_TYPE_LIST(V)
#define BITSET_TYPE_LIST(V) \
MASK_BITSET_TYPE_LIST(V) \
REPRESENTATION_BITSET_TYPE_LIST(V) \
INTERNAL_BITSET_TYPE_LIST(V) \
SEMANTIC_BITSET_TYPE_LIST(V)
class Type;
// -----------------------------------------------------------------------------
// Bitset types (internal).
class BitsetType {
public:
typedef uint32_t bitset; // Internal
enum : uint32_t {
#define DECLARE_TYPE(type, value) k##type = (value),
BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
kUnusedEOL = 0
};
static bitset SignedSmall();
static bitset UnsignedSmall();
bitset Bitset() {
return static_cast<bitset>(reinterpret_cast<uintptr_t>(this) ^ 1u);
}
static bool IsInhabited(bitset bits) {
return SEMANTIC(bits) != kNone && REPRESENTATION(bits) != kNone;
}
static bool SemanticIsInhabited(bitset bits) {
return SEMANTIC(bits) != kNone;
}
static bool Is(bitset bits1, bitset bits2) {
return (bits1 | bits2) == bits2;
}
static double Min(bitset);
static double Max(bitset);
static bitset Glb(Type* type); // greatest lower bound that's a bitset
static bitset Glb(double min, double max);
static bitset Lub(Type* type); // least upper bound that's a bitset
static bitset Lub(i::Map* map);
static bitset Lub(i::Object* value);
static bitset Lub(double value);
static bitset Lub(double min, double max);
static bitset ExpandInternals(bitset bits);
static const char* Name(bitset);
static void Print(std::ostream& os, bitset); // NOLINT
#ifdef DEBUG
static void Print(bitset);
#endif
static bitset NumberBits(bitset bits);
static bool IsBitset(Type* type) {
return reinterpret_cast<uintptr_t>(type) & 1;
}
static Type* NewForTesting(bitset bits) { return New(bits); }
private:
friend class Type;
static Type* New(bitset bits) {
return reinterpret_cast<Type*>(static_cast<uintptr_t>(bits | 1u));
}
struct Boundary {
bitset internal;
bitset external;
double min;
};
static const Boundary BoundariesArray[];
static inline const Boundary* Boundaries();
static inline size_t BoundariesSize();
};
// -----------------------------------------------------------------------------
// Superclass for non-bitset types (internal).
class TypeBase {
protected:
friend class Type;
enum Kind {
kClass,
kConstant,
kContext,
kArray,
kFunction,
kTuple,
kUnion,
kRange
};
Kind kind() const { return kind_; }
explicit TypeBase(Kind kind) : kind_(kind) {}
static bool IsKind(Type* type, Kind kind) {
if (BitsetType::IsBitset(type)) return false;
TypeBase* base = reinterpret_cast<TypeBase*>(type);
return base->kind() == kind;
}
// The hacky conversion to/from Type*.
static Type* AsType(TypeBase* type) { return reinterpret_cast<Type*>(type); }
static TypeBase* FromType(Type* type) {
return reinterpret_cast<TypeBase*>(type);
}
private:
Kind kind_;
};
// -----------------------------------------------------------------------------
// Class types.
class ClassType : public TypeBase {
public:
i::Handle<i::Map> Map() { return map_; }
private:
friend class Type;
friend class BitsetType;
static Type* New(i::Handle<i::Map> map, Zone* zone) {
return AsType(new (zone->New(sizeof(ClassType)))
ClassType(BitsetType::Lub(*map), map));
}
static ClassType* cast(Type* type) {
DCHECK(IsKind(type, kClass));
return static_cast<ClassType*>(FromType(type));
}
ClassType(BitsetType::bitset bitset, i::Handle<i::Map> map)
: TypeBase(kClass), bitset_(bitset), map_(map) {}
BitsetType::bitset Lub() { return bitset_; }
BitsetType::bitset bitset_;
Handle<i::Map> map_;
};
// -----------------------------------------------------------------------------
// Constant types.
class ConstantType : public TypeBase {
public:
i::Handle<i::Object> Value() { return object_; }
private:
friend class Type;
friend class BitsetType;
static Type* New(i::Handle<i::Object> value, Zone* zone) {
BitsetType::bitset bitset = BitsetType::Lub(*value);
return AsType(new (zone->New(sizeof(ConstantType)))
ConstantType(bitset, value));
}
static ConstantType* cast(Type* type) {
DCHECK(IsKind(type, kConstant));
return static_cast<ConstantType*>(FromType(type));
}
ConstantType(BitsetType::bitset bitset, i::Handle<i::Object> object)
: TypeBase(kConstant), bitset_(bitset), object_(object) {}
BitsetType::bitset Lub() { return bitset_; }
BitsetType::bitset bitset_;
Handle<i::Object> object_;
};
// TODO(neis): Also cache value if numerical.
// TODO(neis): Allow restricting the representation.
// -----------------------------------------------------------------------------
// Range types.
class RangeType : public TypeBase {
public:
struct Limits {
double min;
double max;
Limits(double min, double max) : min(min), max(max) {}
explicit Limits(RangeType* range) : min(range->Min()), max(range->Max()) {}
bool IsEmpty();
static Limits Empty() { return Limits(1, 0); }
static Limits Intersect(Limits lhs, Limits rhs);
static Limits Union(Limits lhs, Limits rhs);
};
double Min() { return limits_.min; }
double Max() { return limits_.max; }
private:
friend class Type;
friend class BitsetType;
friend class UnionType;
static Type* New(double min, double max, BitsetType::bitset representation,
Zone* zone) {
return New(Limits(min, max), representation, zone);
}
static bool IsInteger(double x) {
return nearbyint(x) == x && !i::IsMinusZero(x); // Allows for infinities.
}
static Type* New(Limits lim, BitsetType::bitset representation, Zone* zone) {
DCHECK(IsInteger(lim.min) && IsInteger(lim.max));
DCHECK(lim.min <= lim.max);
DCHECK(REPRESENTATION(representation) == representation);
BitsetType::bitset bits =
SEMANTIC(BitsetType::Lub(lim.min, lim.max)) | representation;
return AsType(new (zone->New(sizeof(RangeType))) RangeType(bits, lim));
}
static RangeType* cast(Type* type) {
DCHECK(IsKind(type, kRange));
return static_cast<RangeType*>(FromType(type));
}
RangeType(BitsetType::bitset bitset, Limits limits)
: TypeBase(kRange), bitset_(bitset), limits_(limits) {}
BitsetType::bitset Lub() { return bitset_; }
BitsetType::bitset bitset_;
Limits limits_;
};
// -----------------------------------------------------------------------------
// Context types.
class ContextType : public TypeBase {
public:
Type* Outer() { return outer_; }
private:
friend class Type;
static Type* New(Type* outer, Zone* zone) {
return AsType(new (zone->New(sizeof(ContextType))) ContextType(outer));
}
static ContextType* cast(Type* type) {
DCHECK(IsKind(type, kContext));
return static_cast<ContextType*>(FromType(type));
}
explicit ContextType(Type* outer) : TypeBase(kContext), outer_(outer) {}
Type* outer_;
};
// -----------------------------------------------------------------------------
// Array types.
class ArrayType : public TypeBase {
public:
Type* Element() { return element_; }
private:
friend class Type;
explicit ArrayType(Type* element) : TypeBase(kArray), element_(element) {}
static Type* New(Type* element, Zone* zone) {
return AsType(new (zone->New(sizeof(ArrayType))) ArrayType(element));
}
static ArrayType* cast(Type* type) {
DCHECK(IsKind(type, kArray));
return static_cast<ArrayType*>(FromType(type));
}
Type* element_;
};
// -----------------------------------------------------------------------------
// Superclass for types with variable number of type fields.
class StructuralType : public TypeBase {
public:
int LengthForTesting() { return Length(); }
protected:
friend class Type;
int Length() { return length_; }
Type* Get(int i) {
DCHECK(0 <= i && i < this->Length());
return elements_[i];
}
void Set(int i, Type* type) {
DCHECK(0 <= i && i < this->Length());
elements_[i] = type;
}
void Shrink(int length) {
DCHECK(2 <= length && length <= this->Length());
length_ = length;
}
StructuralType(Kind kind, int length, i::Zone* zone)
: TypeBase(kind), length_(length) {
elements_ = reinterpret_cast<Type**>(zone->New(sizeof(Type*) * length));
}
private:
int length_;
Type** elements_;
};
// -----------------------------------------------------------------------------
// Function types.
class FunctionType : public StructuralType {
public:
int Arity() { return this->Length() - 2; }
Type* Result() { return this->Get(0); }
Type* Receiver() { return this->Get(1); }
Type* Parameter(int i) { return this->Get(2 + i); }
void InitParameter(int i, Type* type) { this->Set(2 + i, type); }
private:
friend class Type;
FunctionType(Type* result, Type* receiver, int arity, Zone* zone)
: StructuralType(kFunction, 2 + arity, zone) {
Set(0, result);
Set(1, receiver);
}
static Type* New(Type* result, Type* receiver, int arity, Zone* zone) {
return AsType(new (zone->New(sizeof(FunctionType)))
FunctionType(result, receiver, arity, zone));
}
static FunctionType* cast(Type* type) {
DCHECK(IsKind(type, kFunction));
return static_cast<FunctionType*>(FromType(type));
}
};
// -----------------------------------------------------------------------------
// Tuple types.
class TupleType : public StructuralType {
public:
int Arity() { return this->Length(); }
Type* Element(int i) { return this->Get(i); }
void InitElement(int i, Type* type) { this->Set(i, type); }
private:
friend class Type;
TupleType(int length, Zone* zone) : StructuralType(kTuple, length, zone) {}
static Type* New(int length, Zone* zone) {
return AsType(new (zone->New(sizeof(TupleType))) TupleType(length, zone));
}
static TupleType* cast(Type* type) {
DCHECK(IsKind(type, kTuple));
return static_cast<TupleType*>(FromType(type));
}
};
// -----------------------------------------------------------------------------
// Union types (internal).
// A union is a structured type with the following invariants:
// - its length is at least 2
// - at most one field is a bitset, and it must go into index 0
// - no field is a union
// - no field is a subtype of any other field
class UnionType : public StructuralType {
private:
friend Type;
friend BitsetType;
UnionType(int length, Zone* zone) : StructuralType(kUnion, length, zone) {}
static Type* New(int length, Zone* zone) {
return AsType(new (zone->New(sizeof(UnionType))) UnionType(length, zone));
}
static UnionType* cast(Type* type) {
DCHECK(IsKind(type, kUnion));
return static_cast<UnionType*>(FromType(type));
}
bool Wellformed();
};
class Type {
public:
typedef BitsetType::bitset bitset; // Internal
// Constructors.
#define DEFINE_TYPE_CONSTRUCTOR(type, value) \
static Type* type() { return BitsetType::New(BitsetType::k##type); }
PROPER_BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
#undef DEFINE_TYPE_CONSTRUCTOR
static Type* SignedSmall() {
return BitsetType::New(BitsetType::SignedSmall());
}
static Type* UnsignedSmall() {
return BitsetType::New(BitsetType::UnsignedSmall());
}
static Type* Class(i::Handle<i::Map> map, Zone* zone) {
return ClassType::New(map, zone);
}
static Type* Constant(i::Handle<i::Object> value, Zone* zone) {
return ConstantType::New(value, zone);
}
static Type* Range(double min, double max, Zone* zone) {
return RangeType::New(min, max, REPRESENTATION(BitsetType::kTagged |
BitsetType::kUntaggedNumber),
zone);
}
static Type* Context(Type* outer, Zone* zone) {
return ContextType::New(outer, zone);
}
static Type* Array(Type* element, Zone* zone) {
return ArrayType::New(element, zone);
}
static Type* Function(Type* result, Type* receiver, int arity, Zone* zone) {
return FunctionType::New(result, receiver, arity, zone);
}
static Type* Function(Type* result, Zone* zone) {
return Function(result, Any(), 0, zone);
}
static Type* Function(Type* result, Type* param0, Zone* zone) {
Type* function = Function(result, Any(), 1, zone);
function->AsFunction()->InitParameter(0, param0);
return function;
}
static Type* Function(Type* result, Type* param0, Type* param1, Zone* zone) {
Type* function = Function(result, Any(), 2, zone);
function->AsFunction()->InitParameter(0, param0);
function->AsFunction()->InitParameter(1, param1);
return function;
}
static Type* Function(Type* result, Type* param0, Type* param1, Type* param2,
Zone* zone) {
Type* function = Function(result, Any(), 3, zone);
function->AsFunction()->InitParameter(0, param0);
function->AsFunction()->InitParameter(1, param1);
function->AsFunction()->InitParameter(2, param2);
return function;
}
static Type* Function(Type* result, int arity, Type** params, Zone* zone) {
Type* function = Function(result, Any(), arity, zone);
for (int i = 0; i < arity; ++i) {
function->AsFunction()->InitParameter(i, params[i]);
}
return function;
}
static Type* Tuple(Type* first, Type* second, Type* third, Zone* zone) {
Type* tuple = TupleType::New(3, zone);
tuple->AsTuple()->InitElement(0, first);
tuple->AsTuple()->InitElement(1, second);
tuple->AsTuple()->InitElement(2, third);
return tuple;
}
#define CONSTRUCT_SIMD_TYPE(NAME, Name, name, lane_count, lane_type) \
static Type* Name(Isolate* isolate, Zone* zone);
SIMD128_TYPES(CONSTRUCT_SIMD_TYPE)
#undef CONSTRUCT_SIMD_TYPE
static Type* Union(Type* type1, Type* type2, Zone* zone);
static Type* Intersect(Type* type1, Type* type2, Zone* zone);
static Type* Of(double value, Zone* zone) {
return BitsetType::New(BitsetType::ExpandInternals(BitsetType::Lub(value)));
}
static Type* Of(i::Object* value, Zone* zone) {
return BitsetType::New(BitsetType::ExpandInternals(BitsetType::Lub(value)));
}
static Type* Of(i::Handle<i::Object> value, Zone* zone) {
return Of(*value, zone);
}
// Extraction of components.
static Type* Representation(Type* t, Zone* zone);
static Type* Semantic(Type* t, Zone* zone);
// Predicates.
bool IsInhabited() { return BitsetType::IsInhabited(this->BitsetLub()); }
bool Is(Type* that) { return this == that || this->SlowIs(that); }
bool Maybe(Type* that);
bool Equals(Type* that) { return this->Is(that) && that->Is(this); }
// Equivalent to Constant(val)->Is(this), but avoiding allocation.
bool Contains(i::Object* val);
bool Contains(i::Handle<i::Object> val) { return this->Contains(*val); }
// State-dependent versions of the above that consider subtyping between
// a constant and its map class.
static Type* NowOf(i::Object* value, Zone* zone);
static Type* NowOf(i::Handle<i::Object> value, Zone* zone) {
return NowOf(*value, zone);
}
bool NowIs(Type* that);
bool NowContains(i::Object* val);
bool NowContains(i::Handle<i::Object> val) { return this->NowContains(*val); }
bool NowStable();
// Inspection.
bool IsRange() { return IsKind(TypeBase::kRange); }
bool IsClass() { return IsKind(TypeBase::kClass); }
bool IsConstant() { return IsKind(TypeBase::kConstant); }
bool IsContext() { return IsKind(TypeBase::kContext); }
bool IsArray() { return IsKind(TypeBase::kArray); }
bool IsFunction() { return IsKind(TypeBase::kFunction); }
bool IsTuple() { return IsKind(TypeBase::kTuple); }
ClassType* AsClass() { return ClassType::cast(this); }
ConstantType* AsConstant() { return ConstantType::cast(this); }
RangeType* AsRange() { return RangeType::cast(this); }
ContextType* AsContext() { return ContextType::cast(this); }
ArrayType* AsArray() { return ArrayType::cast(this); }
FunctionType* AsFunction() { return FunctionType::cast(this); }
TupleType* AsTuple() { return TupleType::cast(this); }
// Minimum and maximum of a numeric type.
// These functions do not distinguish between -0 and +0. If the type equals
// kNaN, they return NaN; otherwise kNaN is ignored. Only call these
// functions on subtypes of Number.
double Min();
double Max();
// Extracts a range from the type: if the type is a range or a union
// containing a range, that range is returned; otherwise, NULL is returned.
Type* GetRange();
static bool IsInteger(i::Object* x);
static bool IsInteger(double x) {
return nearbyint(x) == x && !i::IsMinusZero(x); // Allows for infinities.
}
int NumClasses();
int NumConstants();
template <class T>
class Iterator {
public:
bool Done() const { return index_ < 0; }
i::Handle<T> Current();
void Advance();
private:
friend class Type;
Iterator() : index_(-1) {}
explicit Iterator(Type* type) : type_(type), index_(-1) { Advance(); }
inline bool matches(Type* type);
inline Type* get_type();
Type* type_;
int index_;
};
Iterator<i::Map> Classes() {
if (this->IsBitset()) return Iterator<i::Map>();
return Iterator<i::Map>(this);
}
Iterator<i::Object> Constants() {
if (this->IsBitset()) return Iterator<i::Object>();
return Iterator<i::Object>(this);
}
// Printing.
enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
void PrintTo(std::ostream& os, PrintDimension dim = BOTH_DIMS); // NOLINT
#ifdef DEBUG
void Print();
#endif
// Helpers for testing.
bool IsBitsetForTesting() { return IsBitset(); }
bool IsUnionForTesting() { return IsUnion(); }
bitset AsBitsetForTesting() { return AsBitset(); }
UnionType* AsUnionForTesting() { return AsUnion(); }
private:
// Friends.
template <class>
friend class Iterator;
friend BitsetType;
friend UnionType;
// Internal inspection.
bool IsKind(TypeBase::Kind kind) { return TypeBase::IsKind(this, kind); }
bool IsNone() { return this == None(); }
bool IsAny() { return this == Any(); }
bool IsBitset() { return BitsetType::IsBitset(this); }
bool IsUnion() { return IsKind(TypeBase::kUnion); }
bitset AsBitset() {
DCHECK(this->IsBitset());
return reinterpret_cast<BitsetType*>(this)->Bitset();
}
UnionType* AsUnion() { return UnionType::cast(this); }
bitset Representation();
// Auxiliary functions.
bool SemanticMaybe(Type* that);
bitset BitsetGlb() { return BitsetType::Glb(this); }
bitset BitsetLub() { return BitsetType::Lub(this); }
bool SlowIs(Type* that);
bool SemanticIs(Type* that);
static bool Overlap(RangeType* lhs, RangeType* rhs);
static bool Contains(RangeType* lhs, RangeType* rhs);
static bool Contains(RangeType* range, ConstantType* constant);
static bool Contains(RangeType* range, i::Object* val);
static int UpdateRange(Type* type, UnionType* result, int size, Zone* zone);
static RangeType::Limits IntersectRangeAndBitset(Type* range, Type* bits,
Zone* zone);
static RangeType::Limits ToLimits(bitset bits, Zone* zone);
bool SimplyEquals(Type* that);
static int AddToUnion(Type* type, UnionType* result, int size, Zone* zone);
static int IntersectAux(Type* type, Type* other, UnionType* result, int size,
RangeType::Limits* limits, Zone* zone);
static Type* NormalizeUnion(Type* unioned, int size, Zone* zone);
static Type* NormalizeRangeAndBitset(Type* range, bitset* bits, Zone* zone);
};
// -----------------------------------------------------------------------------
// Type bounds. A simple struct to represent a pair of lower/upper types.
struct Bounds {
Type* lower;
Type* upper;
Bounds()
: // Make sure accessing uninitialized bounds crashes big-time.
lower(nullptr),
upper(nullptr) {}
explicit Bounds(Type* t) : lower(t), upper(t) {}
Bounds(Type* l, Type* u) : lower(l), upper(u) { DCHECK(lower->Is(upper)); }
// Unrestricted bounds.
static Bounds Unbounded() { return Bounds(Type::None(), Type::Any()); }
// Meet: both b1 and b2 are known to hold.
static Bounds Both(Bounds b1, Bounds b2, Zone* zone) {
Type* lower = Type::Union(b1.lower, b2.lower, zone);
Type* upper = Type::Intersect(b1.upper, b2.upper, zone);
// Lower bounds are considered approximate, correct as necessary.
if (!lower->Is(upper)) lower = upper;
return Bounds(lower, upper);
}
// Join: either b1 or b2 is known to hold.
static Bounds Either(Bounds b1, Bounds b2, Zone* zone) {
Type* lower = Type::Intersect(b1.lower, b2.lower, zone);
Type* upper = Type::Union(b1.upper, b2.upper, zone);
return Bounds(lower, upper);
}
static Bounds NarrowLower(Bounds b, Type* t, Zone* zone) {
Type* lower = Type::Union(b.lower, t, zone);
// Lower bounds are considered approximate, correct as necessary.
if (!lower->Is(b.upper)) lower = b.upper;
return Bounds(lower, b.upper);
}
static Bounds NarrowUpper(Bounds b, Type* t, Zone* zone) {
Type* lower = b.lower;
Type* upper = Type::Intersect(b.upper, t, zone);
// Lower bounds are considered approximate, correct as necessary.
if (!lower->Is(upper)) lower = upper;
return Bounds(lower, upper);
}
bool Narrows(Bounds that) {
return that.lower->Is(this->lower) && this->upper->Is(that.upper);
}
};
} // namespace internal
} // namespace v8
#endif // V8_TYPES_H_