// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_TYPES_H_ #define V8_TYPES_H_ #include "src/conversions.h" #include "src/handles.h" #include "src/objects.h" #include "src/ostreams.h" namespace v8 { namespace internal { // SUMMARY // // A simple type system for compiler-internal use. It is based entirely on // union types, and all subtyping hence amounts to set inclusion. Besides the // obvious primitive types and some predefined unions, the type language also // can express class types (a.k.a. specific maps) and singleton types (i.e., // concrete constants). // // Types consist of two dimensions: semantic (value range) and representation. // Both are related through subtyping. // // // SEMANTIC DIMENSION // // The following equations and inequations hold for the semantic axis: // // None <= T // T <= Any // // Number = Signed32 \/ Unsigned32 \/ Double // Smi <= Signed32 // Name = String \/ Symbol // UniqueName = InternalizedString \/ Symbol // InternalizedString < String // // Receiver = Object \/ Proxy // Array < Object // Function < Object // RegExp < Object // OtherUndetectable < Object // DetectableReceiver = Receiver - OtherUndetectable // // Class(map) < T iff instance_type(map) < T // Constant(x) < T iff instance_type(map(x)) < T // Array(T) < Array // Function(R, S, T0, T1, ...) < Function // Context(T) < Internal // // Both structural Array and Function types are invariant in all parameters; // relaxing this would make Union and Intersect operations more involved. // There is no subtyping relation between Array, Function, or Context types // and respective Constant types, since these types cannot be reconstructed // for arbitrary heap values. // Note also that Constant(x) < Class(map(x)) does _not_ hold, since x's map can // change! (Its instance type cannot, however.) // TODO(rossberg): the latter is not currently true for proxies, because of fix, // but will hold once we implement direct proxies. // However, we also define a 'temporal' variant of the subtyping relation that // considers the _current_ state only, i.e., Constant(x) <_now Class(map(x)). // // // REPRESENTATIONAL DIMENSION // // For the representation axis, the following holds: // // None <= R // R <= Any // // UntaggedInt = UntaggedInt1 \/ UntaggedInt8 \/ // UntaggedInt16 \/ UntaggedInt32 // UntaggedFloat = UntaggedFloat32 \/ UntaggedFloat64 // UntaggedNumber = UntaggedInt \/ UntaggedFloat // Untagged = UntaggedNumber \/ UntaggedPtr // Tagged = TaggedInt \/ TaggedPtr // // Subtyping relates the two dimensions, for example: // // Number <= Tagged \/ UntaggedNumber // Object <= TaggedPtr \/ UntaggedPtr // // That holds because the semantic type constructors defined by the API create // types that allow for all possible representations, and dually, the ones for // representation types initially include all semantic ranges. Representations // can then e.g. be narrowed for a given semantic type using intersection: // // SignedSmall /\ TaggedInt (a 'smi') // Number /\ TaggedPtr (a heap number) // // // RANGE TYPES // // A range type represents a continuous integer interval by its minimum and // maximum value. Either value may be an infinity, in which case that infinity // itself is also included in the range. A range never contains NaN or -0. // // If a value v happens to be an integer n, then Constant(v) is considered a // subtype of Range(n, n) (and therefore also a subtype of any larger range). // In order to avoid large unions, however, it is usually a good idea to use // Range rather than Constant. // // // PREDICATES // // There are two main functions for testing types: // // T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2) // T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0) // // Typically, the former is to be used to select representations (e.g., via // T->Is(SignedSmall())), and the latter to check whether a specific case needs // handling (e.g., via T->Maybe(Number())). // // There is no functionality to discover whether a type is a leaf in the // lattice. That is intentional. It should always be possible to refine the // lattice (e.g., splitting up number types further) without invalidating any // existing assumptions or tests. // Consequently, do not normally use Equals for type tests, always use Is! // // The NowIs operator implements state-sensitive subtying, as described above. // Any compilation decision based on such temporary properties requires runtime // guarding! // // // PROPERTIES // // Various formal properties hold for constructors, operators, and predicates // over types. For example, constructors are injective and subtyping is a // complete partial order. // // See test/cctest/test-types.cc for a comprehensive executable specification, // especially with respect to the properties of the more exotic 'temporal' // constructors and predicates (those prefixed 'Now'). // // // IMPLEMENTATION // // Internally, all 'primitive' types, and their unions, are represented as // bitsets. Bit 0 is reserved for tagging. Class is a heap pointer to the // respective map. Only structured types require allocation. // Note that the bitset representation is closed under both Union and Intersect. // ----------------------------------------------------------------------------- // Values for bitset types // clang-format off #define MASK_BITSET_TYPE_LIST(V) \ V(Representation, 0xffc00000u) \ V(Semantic, 0x003ffffeu) #define REPRESENTATION(k) ((k) & BitsetType::kRepresentation) #define SEMANTIC(k) ((k) & BitsetType::kSemantic) #define REPRESENTATION_BITSET_TYPE_LIST(V) \ V(None, 0) \ V(UntaggedBit, 1u << 22 | kSemantic) \ V(UntaggedIntegral8, 1u << 23 | kSemantic) \ V(UntaggedIntegral16, 1u << 24 | kSemantic) \ V(UntaggedIntegral32, 1u << 25 | kSemantic) \ V(UntaggedFloat32, 1u << 26 | kSemantic) \ V(UntaggedFloat64, 1u << 27 | kSemantic) \ V(UntaggedSimd128, 1u << 28 | kSemantic) \ V(UntaggedPointer, 1u << 29 | kSemantic) \ V(TaggedSigned, 1u << 30 | kSemantic) \ V(TaggedPointer, 1u << 31 | kSemantic) \ \ V(UntaggedIntegral, kUntaggedBit | kUntaggedIntegral8 | \ kUntaggedIntegral16 | kUntaggedIntegral32) \ V(UntaggedFloat, kUntaggedFloat32 | kUntaggedFloat64) \ V(UntaggedNumber, kUntaggedIntegral | kUntaggedFloat) \ V(Untagged, kUntaggedNumber | kUntaggedPointer) \ V(Tagged, kTaggedSigned | kTaggedPointer) #define INTERNAL_BITSET_TYPE_LIST(V) \ V(OtherUnsigned31, 1u << 1 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(OtherUnsigned32, 1u << 2 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(OtherSigned32, 1u << 3 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(OtherNumber, 1u << 4 | REPRESENTATION(kTagged | kUntaggedNumber)) #define SEMANTIC_BITSET_TYPE_LIST(V) \ V(Negative31, 1u << 5 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(Null, 1u << 6 | REPRESENTATION(kTaggedPointer)) \ V(Undefined, 1u << 7 | REPRESENTATION(kTaggedPointer)) \ V(Boolean, 1u << 8 | REPRESENTATION(kTaggedPointer)) \ V(Unsigned30, 1u << 9 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(MinusZero, 1u << 10 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(NaN, 1u << 11 | REPRESENTATION(kTagged | kUntaggedNumber)) \ V(Symbol, 1u << 12 | REPRESENTATION(kTaggedPointer)) \ V(InternalizedString, 1u << 13 | REPRESENTATION(kTaggedPointer)) \ V(OtherString, 1u << 14 | REPRESENTATION(kTaggedPointer)) \ V(Simd, 1u << 15 | REPRESENTATION(kTaggedPointer)) \ V(OtherObject, 1u << 17 | REPRESENTATION(kTaggedPointer)) \ V(OtherUndetectable, 1u << 16 | REPRESENTATION(kTaggedPointer)) \ V(Proxy, 1u << 18 | REPRESENTATION(kTaggedPointer)) \ V(Function, 1u << 19 | REPRESENTATION(kTaggedPointer)) \ V(Internal, 1u << 20 | REPRESENTATION(kTagged | kUntagged)) \ \ V(Signed31, kUnsigned30 | kNegative31) \ V(Signed32, kSigned31 | kOtherUnsigned31 | kOtherSigned32) \ V(Negative32, kNegative31 | kOtherSigned32) \ V(Unsigned31, kUnsigned30 | kOtherUnsigned31) \ V(Unsigned32, kUnsigned30 | kOtherUnsigned31 | \ kOtherUnsigned32) \ V(Integral32, kSigned32 | kUnsigned32) \ V(PlainNumber, kIntegral32 | kOtherNumber) \ V(OrderedNumber, kPlainNumber | kMinusZero) \ V(MinusZeroOrNaN, kMinusZero | kNaN) \ V(Number, kOrderedNumber | kNaN) \ V(String, kInternalizedString | kOtherString) \ V(UniqueName, kSymbol | kInternalizedString) \ V(Name, kSymbol | kString) \ V(BooleanOrNumber, kBoolean | kNumber) \ V(BooleanOrNullOrUndefined, kBoolean | kNull | kUndefined) \ V(NullOrUndefined, kNull | kUndefined) \ V(Undetectable, kNullOrUndefined | kOtherUndetectable) \ V(NumberOrOddball, kNumber | kNullOrUndefined | kBoolean) \ V(NumberOrSimdOrString, kNumber | kSimd | kString) \ V(NumberOrString, kNumber | kString) \ V(NumberOrUndefined, kNumber | kUndefined) \ V(PlainPrimitive, kNumberOrString | kBoolean | kNullOrUndefined) \ V(Primitive, kSymbol | kSimd | kPlainPrimitive) \ V(DetectableReceiver, kFunction | kOtherObject | kProxy) \ V(Object, kFunction | kOtherObject | kOtherUndetectable) \ V(Receiver, kObject | kProxy) \ V(StringOrReceiver, kString | kReceiver) \ V(Unique, kBoolean | kUniqueName | kNull | kUndefined | \ kReceiver) \ V(NonInternal, kPrimitive | kReceiver) \ V(NonNumber, kUnique | kString | kInternal) \ V(Any, 0xfffffffeu) // clang-format on /* * The following diagrams show how integers (in the mathematical sense) are * divided among the different atomic numerical types. * * ON OS32 N31 U30 OU31 OU32 ON * ______[_______[_______[_______[_______[_______[_______ * -2^31 -2^30 0 2^30 2^31 2^32 * * E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1. * * Some of the atomic numerical bitsets are internal only (see * INTERNAL_BITSET_TYPE_LIST). To a types user, they should only occur in * union with certain other bitsets. For instance, OtherNumber should only * occur as part of PlainNumber. */ #define PROPER_BITSET_TYPE_LIST(V) \ REPRESENTATION_BITSET_TYPE_LIST(V) \ SEMANTIC_BITSET_TYPE_LIST(V) #define BITSET_TYPE_LIST(V) \ MASK_BITSET_TYPE_LIST(V) \ REPRESENTATION_BITSET_TYPE_LIST(V) \ INTERNAL_BITSET_TYPE_LIST(V) \ SEMANTIC_BITSET_TYPE_LIST(V) class Type; // ----------------------------------------------------------------------------- // Bitset types (internal). class BitsetType { public: typedef uint32_t bitset; // Internal enum : uint32_t { #define DECLARE_TYPE(type, value) k##type = (value), BITSET_TYPE_LIST(DECLARE_TYPE) #undef DECLARE_TYPE kUnusedEOL = 0 }; static bitset SignedSmall(); static bitset UnsignedSmall(); bitset Bitset() { return static_cast<bitset>(reinterpret_cast<uintptr_t>(this) ^ 1u); } static bool IsInhabited(bitset bits) { return SEMANTIC(bits) != kNone && REPRESENTATION(bits) != kNone; } static bool SemanticIsInhabited(bitset bits) { return SEMANTIC(bits) != kNone; } static bool Is(bitset bits1, bitset bits2) { return (bits1 | bits2) == bits2; } static double Min(bitset); static double Max(bitset); static bitset Glb(Type* type); // greatest lower bound that's a bitset static bitset Glb(double min, double max); static bitset Lub(Type* type); // least upper bound that's a bitset static bitset Lub(i::Map* map); static bitset Lub(i::Object* value); static bitset Lub(double value); static bitset Lub(double min, double max); static bitset ExpandInternals(bitset bits); static const char* Name(bitset); static void Print(std::ostream& os, bitset); // NOLINT #ifdef DEBUG static void Print(bitset); #endif static bitset NumberBits(bitset bits); static bool IsBitset(Type* type) { return reinterpret_cast<uintptr_t>(type) & 1; } static Type* NewForTesting(bitset bits) { return New(bits); } private: friend class Type; static Type* New(bitset bits) { return reinterpret_cast<Type*>(static_cast<uintptr_t>(bits | 1u)); } struct Boundary { bitset internal; bitset external; double min; }; static const Boundary BoundariesArray[]; static inline const Boundary* Boundaries(); static inline size_t BoundariesSize(); }; // ----------------------------------------------------------------------------- // Superclass for non-bitset types (internal). class TypeBase { protected: friend class Type; enum Kind { kClass, kConstant, kContext, kArray, kFunction, kTuple, kUnion, kRange }; Kind kind() const { return kind_; } explicit TypeBase(Kind kind) : kind_(kind) {} static bool IsKind(Type* type, Kind kind) { if (BitsetType::IsBitset(type)) return false; TypeBase* base = reinterpret_cast<TypeBase*>(type); return base->kind() == kind; } // The hacky conversion to/from Type*. static Type* AsType(TypeBase* type) { return reinterpret_cast<Type*>(type); } static TypeBase* FromType(Type* type) { return reinterpret_cast<TypeBase*>(type); } private: Kind kind_; }; // ----------------------------------------------------------------------------- // Class types. class ClassType : public TypeBase { public: i::Handle<i::Map> Map() { return map_; } private: friend class Type; friend class BitsetType; static Type* New(i::Handle<i::Map> map, Zone* zone) { return AsType(new (zone->New(sizeof(ClassType))) ClassType(BitsetType::Lub(*map), map)); } static ClassType* cast(Type* type) { DCHECK(IsKind(type, kClass)); return static_cast<ClassType*>(FromType(type)); } ClassType(BitsetType::bitset bitset, i::Handle<i::Map> map) : TypeBase(kClass), bitset_(bitset), map_(map) {} BitsetType::bitset Lub() { return bitset_; } BitsetType::bitset bitset_; Handle<i::Map> map_; }; // ----------------------------------------------------------------------------- // Constant types. class ConstantType : public TypeBase { public: i::Handle<i::Object> Value() { return object_; } private: friend class Type; friend class BitsetType; static Type* New(i::Handle<i::Object> value, Zone* zone) { BitsetType::bitset bitset = BitsetType::Lub(*value); return AsType(new (zone->New(sizeof(ConstantType))) ConstantType(bitset, value)); } static ConstantType* cast(Type* type) { DCHECK(IsKind(type, kConstant)); return static_cast<ConstantType*>(FromType(type)); } ConstantType(BitsetType::bitset bitset, i::Handle<i::Object> object) : TypeBase(kConstant), bitset_(bitset), object_(object) {} BitsetType::bitset Lub() { return bitset_; } BitsetType::bitset bitset_; Handle<i::Object> object_; }; // TODO(neis): Also cache value if numerical. // TODO(neis): Allow restricting the representation. // ----------------------------------------------------------------------------- // Range types. class RangeType : public TypeBase { public: struct Limits { double min; double max; Limits(double min, double max) : min(min), max(max) {} explicit Limits(RangeType* range) : min(range->Min()), max(range->Max()) {} bool IsEmpty(); static Limits Empty() { return Limits(1, 0); } static Limits Intersect(Limits lhs, Limits rhs); static Limits Union(Limits lhs, Limits rhs); }; double Min() { return limits_.min; } double Max() { return limits_.max; } private: friend class Type; friend class BitsetType; friend class UnionType; static Type* New(double min, double max, BitsetType::bitset representation, Zone* zone) { return New(Limits(min, max), representation, zone); } static bool IsInteger(double x) { return nearbyint(x) == x && !i::IsMinusZero(x); // Allows for infinities. } static Type* New(Limits lim, BitsetType::bitset representation, Zone* zone) { DCHECK(IsInteger(lim.min) && IsInteger(lim.max)); DCHECK(lim.min <= lim.max); DCHECK(REPRESENTATION(representation) == representation); BitsetType::bitset bits = SEMANTIC(BitsetType::Lub(lim.min, lim.max)) | representation; return AsType(new (zone->New(sizeof(RangeType))) RangeType(bits, lim)); } static RangeType* cast(Type* type) { DCHECK(IsKind(type, kRange)); return static_cast<RangeType*>(FromType(type)); } RangeType(BitsetType::bitset bitset, Limits limits) : TypeBase(kRange), bitset_(bitset), limits_(limits) {} BitsetType::bitset Lub() { return bitset_; } BitsetType::bitset bitset_; Limits limits_; }; // ----------------------------------------------------------------------------- // Context types. class ContextType : public TypeBase { public: Type* Outer() { return outer_; } private: friend class Type; static Type* New(Type* outer, Zone* zone) { return AsType(new (zone->New(sizeof(ContextType))) ContextType(outer)); } static ContextType* cast(Type* type) { DCHECK(IsKind(type, kContext)); return static_cast<ContextType*>(FromType(type)); } explicit ContextType(Type* outer) : TypeBase(kContext), outer_(outer) {} Type* outer_; }; // ----------------------------------------------------------------------------- // Array types. class ArrayType : public TypeBase { public: Type* Element() { return element_; } private: friend class Type; explicit ArrayType(Type* element) : TypeBase(kArray), element_(element) {} static Type* New(Type* element, Zone* zone) { return AsType(new (zone->New(sizeof(ArrayType))) ArrayType(element)); } static ArrayType* cast(Type* type) { DCHECK(IsKind(type, kArray)); return static_cast<ArrayType*>(FromType(type)); } Type* element_; }; // ----------------------------------------------------------------------------- // Superclass for types with variable number of type fields. class StructuralType : public TypeBase { public: int LengthForTesting() { return Length(); } protected: friend class Type; int Length() { return length_; } Type* Get(int i) { DCHECK(0 <= i && i < this->Length()); return elements_[i]; } void Set(int i, Type* type) { DCHECK(0 <= i && i < this->Length()); elements_[i] = type; } void Shrink(int length) { DCHECK(2 <= length && length <= this->Length()); length_ = length; } StructuralType(Kind kind, int length, i::Zone* zone) : TypeBase(kind), length_(length) { elements_ = reinterpret_cast<Type**>(zone->New(sizeof(Type*) * length)); } private: int length_; Type** elements_; }; // ----------------------------------------------------------------------------- // Function types. class FunctionType : public StructuralType { public: int Arity() { return this->Length() - 2; } Type* Result() { return this->Get(0); } Type* Receiver() { return this->Get(1); } Type* Parameter(int i) { return this->Get(2 + i); } void InitParameter(int i, Type* type) { this->Set(2 + i, type); } private: friend class Type; FunctionType(Type* result, Type* receiver, int arity, Zone* zone) : StructuralType(kFunction, 2 + arity, zone) { Set(0, result); Set(1, receiver); } static Type* New(Type* result, Type* receiver, int arity, Zone* zone) { return AsType(new (zone->New(sizeof(FunctionType))) FunctionType(result, receiver, arity, zone)); } static FunctionType* cast(Type* type) { DCHECK(IsKind(type, kFunction)); return static_cast<FunctionType*>(FromType(type)); } }; // ----------------------------------------------------------------------------- // Tuple types. class TupleType : public StructuralType { public: int Arity() { return this->Length(); } Type* Element(int i) { return this->Get(i); } void InitElement(int i, Type* type) { this->Set(i, type); } private: friend class Type; TupleType(int length, Zone* zone) : StructuralType(kTuple, length, zone) {} static Type* New(int length, Zone* zone) { return AsType(new (zone->New(sizeof(TupleType))) TupleType(length, zone)); } static TupleType* cast(Type* type) { DCHECK(IsKind(type, kTuple)); return static_cast<TupleType*>(FromType(type)); } }; // ----------------------------------------------------------------------------- // Union types (internal). // A union is a structured type with the following invariants: // - its length is at least 2 // - at most one field is a bitset, and it must go into index 0 // - no field is a union // - no field is a subtype of any other field class UnionType : public StructuralType { private: friend Type; friend BitsetType; UnionType(int length, Zone* zone) : StructuralType(kUnion, length, zone) {} static Type* New(int length, Zone* zone) { return AsType(new (zone->New(sizeof(UnionType))) UnionType(length, zone)); } static UnionType* cast(Type* type) { DCHECK(IsKind(type, kUnion)); return static_cast<UnionType*>(FromType(type)); } bool Wellformed(); }; class Type { public: typedef BitsetType::bitset bitset; // Internal // Constructors. #define DEFINE_TYPE_CONSTRUCTOR(type, value) \ static Type* type() { return BitsetType::New(BitsetType::k##type); } PROPER_BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR) #undef DEFINE_TYPE_CONSTRUCTOR static Type* SignedSmall() { return BitsetType::New(BitsetType::SignedSmall()); } static Type* UnsignedSmall() { return BitsetType::New(BitsetType::UnsignedSmall()); } static Type* Class(i::Handle<i::Map> map, Zone* zone) { return ClassType::New(map, zone); } static Type* Constant(i::Handle<i::Object> value, Zone* zone) { return ConstantType::New(value, zone); } static Type* Range(double min, double max, Zone* zone) { return RangeType::New(min, max, REPRESENTATION(BitsetType::kTagged | BitsetType::kUntaggedNumber), zone); } static Type* Context(Type* outer, Zone* zone) { return ContextType::New(outer, zone); } static Type* Array(Type* element, Zone* zone) { return ArrayType::New(element, zone); } static Type* Function(Type* result, Type* receiver, int arity, Zone* zone) { return FunctionType::New(result, receiver, arity, zone); } static Type* Function(Type* result, Zone* zone) { return Function(result, Any(), 0, zone); } static Type* Function(Type* result, Type* param0, Zone* zone) { Type* function = Function(result, Any(), 1, zone); function->AsFunction()->InitParameter(0, param0); return function; } static Type* Function(Type* result, Type* param0, Type* param1, Zone* zone) { Type* function = Function(result, Any(), 2, zone); function->AsFunction()->InitParameter(0, param0); function->AsFunction()->InitParameter(1, param1); return function; } static Type* Function(Type* result, Type* param0, Type* param1, Type* param2, Zone* zone) { Type* function = Function(result, Any(), 3, zone); function->AsFunction()->InitParameter(0, param0); function->AsFunction()->InitParameter(1, param1); function->AsFunction()->InitParameter(2, param2); return function; } static Type* Function(Type* result, int arity, Type** params, Zone* zone) { Type* function = Function(result, Any(), arity, zone); for (int i = 0; i < arity; ++i) { function->AsFunction()->InitParameter(i, params[i]); } return function; } static Type* Tuple(Type* first, Type* second, Type* third, Zone* zone) { Type* tuple = TupleType::New(3, zone); tuple->AsTuple()->InitElement(0, first); tuple->AsTuple()->InitElement(1, second); tuple->AsTuple()->InitElement(2, third); return tuple; } #define CONSTRUCT_SIMD_TYPE(NAME, Name, name, lane_count, lane_type) \ static Type* Name(Isolate* isolate, Zone* zone); SIMD128_TYPES(CONSTRUCT_SIMD_TYPE) #undef CONSTRUCT_SIMD_TYPE static Type* Union(Type* type1, Type* type2, Zone* zone); static Type* Intersect(Type* type1, Type* type2, Zone* zone); static Type* Of(double value, Zone* zone) { return BitsetType::New(BitsetType::ExpandInternals(BitsetType::Lub(value))); } static Type* Of(i::Object* value, Zone* zone) { return BitsetType::New(BitsetType::ExpandInternals(BitsetType::Lub(value))); } static Type* Of(i::Handle<i::Object> value, Zone* zone) { return Of(*value, zone); } // Extraction of components. static Type* Representation(Type* t, Zone* zone); static Type* Semantic(Type* t, Zone* zone); // Predicates. bool IsInhabited() { return BitsetType::IsInhabited(this->BitsetLub()); } bool Is(Type* that) { return this == that || this->SlowIs(that); } bool Maybe(Type* that); bool Equals(Type* that) { return this->Is(that) && that->Is(this); } // Equivalent to Constant(val)->Is(this), but avoiding allocation. bool Contains(i::Object* val); bool Contains(i::Handle<i::Object> val) { return this->Contains(*val); } // State-dependent versions of the above that consider subtyping between // a constant and its map class. static Type* NowOf(i::Object* value, Zone* zone); static Type* NowOf(i::Handle<i::Object> value, Zone* zone) { return NowOf(*value, zone); } bool NowIs(Type* that); bool NowContains(i::Object* val); bool NowContains(i::Handle<i::Object> val) { return this->NowContains(*val); } bool NowStable(); // Inspection. bool IsRange() { return IsKind(TypeBase::kRange); } bool IsClass() { return IsKind(TypeBase::kClass); } bool IsConstant() { return IsKind(TypeBase::kConstant); } bool IsContext() { return IsKind(TypeBase::kContext); } bool IsArray() { return IsKind(TypeBase::kArray); } bool IsFunction() { return IsKind(TypeBase::kFunction); } bool IsTuple() { return IsKind(TypeBase::kTuple); } ClassType* AsClass() { return ClassType::cast(this); } ConstantType* AsConstant() { return ConstantType::cast(this); } RangeType* AsRange() { return RangeType::cast(this); } ContextType* AsContext() { return ContextType::cast(this); } ArrayType* AsArray() { return ArrayType::cast(this); } FunctionType* AsFunction() { return FunctionType::cast(this); } TupleType* AsTuple() { return TupleType::cast(this); } // Minimum and maximum of a numeric type. // These functions do not distinguish between -0 and +0. If the type equals // kNaN, they return NaN; otherwise kNaN is ignored. Only call these // functions on subtypes of Number. double Min(); double Max(); // Extracts a range from the type: if the type is a range or a union // containing a range, that range is returned; otherwise, NULL is returned. Type* GetRange(); static bool IsInteger(i::Object* x); static bool IsInteger(double x) { return nearbyint(x) == x && !i::IsMinusZero(x); // Allows for infinities. } int NumClasses(); int NumConstants(); template <class T> class Iterator { public: bool Done() const { return index_ < 0; } i::Handle<T> Current(); void Advance(); private: friend class Type; Iterator() : index_(-1) {} explicit Iterator(Type* type) : type_(type), index_(-1) { Advance(); } inline bool matches(Type* type); inline Type* get_type(); Type* type_; int index_; }; Iterator<i::Map> Classes() { if (this->IsBitset()) return Iterator<i::Map>(); return Iterator<i::Map>(this); } Iterator<i::Object> Constants() { if (this->IsBitset()) return Iterator<i::Object>(); return Iterator<i::Object>(this); } // Printing. enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM }; void PrintTo(std::ostream& os, PrintDimension dim = BOTH_DIMS); // NOLINT #ifdef DEBUG void Print(); #endif // Helpers for testing. bool IsBitsetForTesting() { return IsBitset(); } bool IsUnionForTesting() { return IsUnion(); } bitset AsBitsetForTesting() { return AsBitset(); } UnionType* AsUnionForTesting() { return AsUnion(); } private: // Friends. template <class> friend class Iterator; friend BitsetType; friend UnionType; // Internal inspection. bool IsKind(TypeBase::Kind kind) { return TypeBase::IsKind(this, kind); } bool IsNone() { return this == None(); } bool IsAny() { return this == Any(); } bool IsBitset() { return BitsetType::IsBitset(this); } bool IsUnion() { return IsKind(TypeBase::kUnion); } bitset AsBitset() { DCHECK(this->IsBitset()); return reinterpret_cast<BitsetType*>(this)->Bitset(); } UnionType* AsUnion() { return UnionType::cast(this); } bitset Representation(); // Auxiliary functions. bool SemanticMaybe(Type* that); bitset BitsetGlb() { return BitsetType::Glb(this); } bitset BitsetLub() { return BitsetType::Lub(this); } bool SlowIs(Type* that); bool SemanticIs(Type* that); static bool Overlap(RangeType* lhs, RangeType* rhs); static bool Contains(RangeType* lhs, RangeType* rhs); static bool Contains(RangeType* range, ConstantType* constant); static bool Contains(RangeType* range, i::Object* val); static int UpdateRange(Type* type, UnionType* result, int size, Zone* zone); static RangeType::Limits IntersectRangeAndBitset(Type* range, Type* bits, Zone* zone); static RangeType::Limits ToLimits(bitset bits, Zone* zone); bool SimplyEquals(Type* that); static int AddToUnion(Type* type, UnionType* result, int size, Zone* zone); static int IntersectAux(Type* type, Type* other, UnionType* result, int size, RangeType::Limits* limits, Zone* zone); static Type* NormalizeUnion(Type* unioned, int size, Zone* zone); static Type* NormalizeRangeAndBitset(Type* range, bitset* bits, Zone* zone); }; // ----------------------------------------------------------------------------- // Type bounds. A simple struct to represent a pair of lower/upper types. struct Bounds { Type* lower; Type* upper; Bounds() : // Make sure accessing uninitialized bounds crashes big-time. lower(nullptr), upper(nullptr) {} explicit Bounds(Type* t) : lower(t), upper(t) {} Bounds(Type* l, Type* u) : lower(l), upper(u) { DCHECK(lower->Is(upper)); } // Unrestricted bounds. static Bounds Unbounded() { return Bounds(Type::None(), Type::Any()); } // Meet: both b1 and b2 are known to hold. static Bounds Both(Bounds b1, Bounds b2, Zone* zone) { Type* lower = Type::Union(b1.lower, b2.lower, zone); Type* upper = Type::Intersect(b1.upper, b2.upper, zone); // Lower bounds are considered approximate, correct as necessary. if (!lower->Is(upper)) lower = upper; return Bounds(lower, upper); } // Join: either b1 or b2 is known to hold. static Bounds Either(Bounds b1, Bounds b2, Zone* zone) { Type* lower = Type::Intersect(b1.lower, b2.lower, zone); Type* upper = Type::Union(b1.upper, b2.upper, zone); return Bounds(lower, upper); } static Bounds NarrowLower(Bounds b, Type* t, Zone* zone) { Type* lower = Type::Union(b.lower, t, zone); // Lower bounds are considered approximate, correct as necessary. if (!lower->Is(b.upper)) lower = b.upper; return Bounds(lower, b.upper); } static Bounds NarrowUpper(Bounds b, Type* t, Zone* zone) { Type* lower = b.lower; Type* upper = Type::Intersect(b.upper, t, zone); // Lower bounds are considered approximate, correct as necessary. if (!lower->Is(upper)) lower = upper; return Bounds(lower, upper); } bool Narrows(Bounds that) { return that.lower->Is(this->lower) && this->upper->Is(that.upper); } }; } // namespace internal } // namespace v8 #endif // V8_TYPES_H_