// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/parsing/rewriter.h"
#include "src/ast/ast.h"
#include "src/ast/scopes.h"
#include "src/parsing/parser.h"
namespace v8 {
namespace internal {
class Processor: public AstVisitor {
public:
Processor(Isolate* isolate, Scope* scope, Variable* result,
AstValueFactory* ast_value_factory)
: result_(result),
result_assigned_(false),
replacement_(nullptr),
is_set_(false),
zone_(ast_value_factory->zone()),
scope_(scope),
factory_(ast_value_factory) {
InitializeAstVisitor(isolate);
}
Processor(Parser* parser, Scope* scope, Variable* result,
AstValueFactory* ast_value_factory)
: result_(result),
result_assigned_(false),
replacement_(nullptr),
is_set_(false),
zone_(ast_value_factory->zone()),
scope_(scope),
factory_(ast_value_factory) {
InitializeAstVisitor(parser->stack_limit());
}
~Processor() override {}
void Process(ZoneList<Statement*>* statements);
bool result_assigned() const { return result_assigned_; }
Zone* zone() { return zone_; }
Scope* scope() { return scope_; }
AstNodeFactory* factory() { return &factory_; }
// Returns ".result = value"
Expression* SetResult(Expression* value) {
result_assigned_ = true;
VariableProxy* result_proxy = factory()->NewVariableProxy(result_);
return factory()->NewAssignment(Token::ASSIGN, result_proxy, value,
RelocInfo::kNoPosition);
}
// Inserts '.result = undefined' in front of the given statement.
Statement* AssignUndefinedBefore(Statement* s);
private:
Variable* result_;
// We are not tracking result usage via the result_'s use
// counts (we leave the accurate computation to the
// usage analyzer). Instead we simple remember if
// there was ever an assignment to result_.
bool result_assigned_;
// When visiting a node, we "return" a replacement for that node in
// [replacement_]. In many cases this will just be the original node.
Statement* replacement_;
// To avoid storing to .result all the time, we eliminate some of
// the stores by keeping track of whether or not we're sure .result
// will be overwritten anyway. This is a bit more tricky than what I
// was hoping for.
bool is_set_;
Zone* zone_;
Scope* scope_;
AstNodeFactory factory_;
// Node visitors.
#define DEF_VISIT(type) void Visit##type(type* node) override;
AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
void VisitIterationStatement(IterationStatement* stmt);
DEFINE_AST_VISITOR_SUBCLASS_MEMBERS();
};
Statement* Processor::AssignUndefinedBefore(Statement* s) {
Expression* result_proxy = factory()->NewVariableProxy(result_);
Expression* undef = factory()->NewUndefinedLiteral(RelocInfo::kNoPosition);
Expression* assignment = factory()->NewAssignment(
Token::ASSIGN, result_proxy, undef, RelocInfo::kNoPosition);
Block* b = factory()->NewBlock(NULL, 2, false, RelocInfo::kNoPosition);
b->statements()->Add(
factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition),
zone());
b->statements()->Add(s, zone());
return b;
}
void Processor::Process(ZoneList<Statement*>* statements) {
for (int i = statements->length() - 1; i >= 0; --i) {
Visit(statements->at(i));
statements->Set(i, replacement_);
}
}
void Processor::VisitBlock(Block* node) {
// An initializer block is the rewritten form of a variable declaration
// with initialization expressions. The initializer block contains the
// list of assignments corresponding to the initialization expressions.
// While unclear from the spec (ECMA-262, 3rd., 12.2), the value of
// a variable declaration with initialization expression is 'undefined'
// with some JS VMs: For instance, using smjs, print(eval('var x = 7'))
// returns 'undefined'. To obtain the same behavior with v8, we need
// to prevent rewriting in that case.
if (!node->ignore_completion_value()) Process(node->statements());
replacement_ = node;
}
void Processor::VisitExpressionStatement(ExpressionStatement* node) {
// Rewrite : <x>; -> .result = <x>;
if (!is_set_) {
node->set_expression(SetResult(node->expression()));
is_set_ = true;
}
replacement_ = node;
}
void Processor::VisitIfStatement(IfStatement* node) {
// Rewrite both branches.
bool set_after = is_set_;
Visit(node->then_statement());
node->set_then_statement(replacement_);
bool set_in_then = is_set_;
is_set_ = set_after;
Visit(node->else_statement());
node->set_else_statement(replacement_);
is_set_ = is_set_ && set_in_then;
replacement_ = node;
if (!is_set_) {
is_set_ = true;
replacement_ = AssignUndefinedBefore(node);
}
}
void Processor::VisitIterationStatement(IterationStatement* node) {
// Rewrite the body.
bool set_after = is_set_;
is_set_ = false; // We are in a loop, so we can't rely on [set_after].
Visit(node->body());
node->set_body(replacement_);
is_set_ = is_set_ && set_after;
replacement_ = node;
if (!is_set_) {
is_set_ = true;
replacement_ = AssignUndefinedBefore(node);
}
}
void Processor::VisitDoWhileStatement(DoWhileStatement* node) {
VisitIterationStatement(node);
}
void Processor::VisitWhileStatement(WhileStatement* node) {
VisitIterationStatement(node);
}
void Processor::VisitForStatement(ForStatement* node) {
VisitIterationStatement(node);
}
void Processor::VisitForInStatement(ForInStatement* node) {
VisitIterationStatement(node);
}
void Processor::VisitForOfStatement(ForOfStatement* node) {
VisitIterationStatement(node);
}
void Processor::VisitTryCatchStatement(TryCatchStatement* node) {
// Rewrite both try and catch block.
bool set_after = is_set_;
Visit(node->try_block());
node->set_try_block(static_cast<Block*>(replacement_));
bool set_in_try = is_set_;
is_set_ = set_after;
Visit(node->catch_block());
node->set_catch_block(static_cast<Block*>(replacement_));
is_set_ = is_set_ && set_in_try;
replacement_ = node;
if (!is_set_) {
is_set_ = true;
replacement_ = AssignUndefinedBefore(node);
}
}
void Processor::VisitTryFinallyStatement(TryFinallyStatement* node) {
// Rewrite both try and finally block (in reverse order).
bool set_after = is_set_;
is_set_ = true; // Don't normally need to assign in finally block.
Visit(node->finally_block());
node->set_finally_block(replacement_->AsBlock());
{ // Save .result value at the beginning of the finally block and restore it
// at the end again: ".backup = .result; ...; .result = .backup"
// This is necessary because the finally block does not normally contribute
// to the completion value.
CHECK(scope() != nullptr);
Variable* backup = scope()->NewTemporary(
factory()->ast_value_factory()->dot_result_string());
Expression* backup_proxy = factory()->NewVariableProxy(backup);
Expression* result_proxy = factory()->NewVariableProxy(result_);
Expression* save = factory()->NewAssignment(
Token::ASSIGN, backup_proxy, result_proxy, RelocInfo::kNoPosition);
Expression* restore = factory()->NewAssignment(
Token::ASSIGN, result_proxy, backup_proxy, RelocInfo::kNoPosition);
node->finally_block()->statements()->InsertAt(
0, factory()->NewExpressionStatement(save, RelocInfo::kNoPosition),
zone());
node->finally_block()->statements()->Add(
factory()->NewExpressionStatement(restore, RelocInfo::kNoPosition),
zone());
}
is_set_ = set_after;
Visit(node->try_block());
node->set_try_block(replacement_->AsBlock());
replacement_ = node;
if (!is_set_) {
is_set_ = true;
replacement_ = AssignUndefinedBefore(node);
}
}
void Processor::VisitSwitchStatement(SwitchStatement* node) {
// Rewrite statements in all case clauses (in reverse order).
ZoneList<CaseClause*>* clauses = node->cases();
bool set_after = is_set_;
for (int i = clauses->length() - 1; i >= 0; --i) {
CaseClause* clause = clauses->at(i);
Process(clause->statements());
}
is_set_ = is_set_ && set_after;
replacement_ = node;
if (!is_set_) {
is_set_ = true;
replacement_ = AssignUndefinedBefore(node);
}
}
void Processor::VisitContinueStatement(ContinueStatement* node) {
is_set_ = false;
replacement_ = node;
}
void Processor::VisitBreakStatement(BreakStatement* node) {
is_set_ = false;
replacement_ = node;
}
void Processor::VisitWithStatement(WithStatement* node) {
Visit(node->statement());
node->set_statement(replacement_);
replacement_ = node;
if (!is_set_) {
is_set_ = true;
replacement_ = AssignUndefinedBefore(node);
}
}
void Processor::VisitSloppyBlockFunctionStatement(
SloppyBlockFunctionStatement* node) {
Visit(node->statement());
node->set_statement(replacement_);
replacement_ = node;
}
void Processor::VisitEmptyStatement(EmptyStatement* node) {
replacement_ = node;
}
void Processor::VisitReturnStatement(ReturnStatement* node) {
is_set_ = true;
replacement_ = node;
}
void Processor::VisitDebuggerStatement(DebuggerStatement* node) {
replacement_ = node;
}
// Expressions are never visited.
#define DEF_VISIT(type) \
void Processor::Visit##type(type* expr) { UNREACHABLE(); }
EXPRESSION_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
// Declarations are never visited.
#define DEF_VISIT(type) \
void Processor::Visit##type(type* expr) { UNREACHABLE(); }
DECLARATION_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
// Assumes code has been parsed. Mutates the AST, so the AST should not
// continue to be used in the case of failure.
bool Rewriter::Rewrite(ParseInfo* info) {
FunctionLiteral* function = info->literal();
DCHECK(function != NULL);
Scope* scope = function->scope();
DCHECK(scope != NULL);
if (!scope->is_script_scope() && !scope->is_eval_scope()) return true;
ZoneList<Statement*>* body = function->body();
if (!body->is_empty()) {
Variable* result =
scope->NewTemporary(info->ast_value_factory()->dot_result_string());
// The name string must be internalized at this point.
DCHECK(!result->name().is_null());
Processor processor(info->isolate(), scope, result,
info->ast_value_factory());
processor.Process(body);
if (processor.HasStackOverflow()) return false;
if (processor.result_assigned()) {
int pos = RelocInfo::kNoPosition;
VariableProxy* result_proxy =
processor.factory()->NewVariableProxy(result, pos);
Statement* result_statement =
processor.factory()->NewReturnStatement(result_proxy, pos);
body->Add(result_statement, info->zone());
}
}
return true;
}
bool Rewriter::Rewrite(Parser* parser, DoExpression* expr,
AstValueFactory* factory) {
Block* block = expr->block();
Scope* scope = block->scope();
ZoneList<Statement*>* body = block->statements();
VariableProxy* result = expr->result();
Variable* result_var = result->var();
if (!body->is_empty()) {
Processor processor(parser, scope, result_var, factory);
processor.Process(body);
if (processor.HasStackOverflow()) return false;
if (!processor.result_assigned()) {
AstNodeFactory* node_factory = processor.factory();
Expression* undef =
node_factory->NewUndefinedLiteral(RelocInfo::kNoPosition);
Statement* completion = node_factory->NewExpressionStatement(
processor.SetResult(undef), expr->position());
body->Add(completion, factory->zone());
}
}
return true;
}
} // namespace internal
} // namespace v8