// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/parsing/rewriter.h" #include "src/ast/ast.h" #include "src/ast/scopes.h" #include "src/parsing/parser.h" namespace v8 { namespace internal { class Processor: public AstVisitor { public: Processor(Isolate* isolate, Scope* scope, Variable* result, AstValueFactory* ast_value_factory) : result_(result), result_assigned_(false), replacement_(nullptr), is_set_(false), zone_(ast_value_factory->zone()), scope_(scope), factory_(ast_value_factory) { InitializeAstVisitor(isolate); } Processor(Parser* parser, Scope* scope, Variable* result, AstValueFactory* ast_value_factory) : result_(result), result_assigned_(false), replacement_(nullptr), is_set_(false), zone_(ast_value_factory->zone()), scope_(scope), factory_(ast_value_factory) { InitializeAstVisitor(parser->stack_limit()); } ~Processor() override {} void Process(ZoneList<Statement*>* statements); bool result_assigned() const { return result_assigned_; } Zone* zone() { return zone_; } Scope* scope() { return scope_; } AstNodeFactory* factory() { return &factory_; } // Returns ".result = value" Expression* SetResult(Expression* value) { result_assigned_ = true; VariableProxy* result_proxy = factory()->NewVariableProxy(result_); return factory()->NewAssignment(Token::ASSIGN, result_proxy, value, RelocInfo::kNoPosition); } // Inserts '.result = undefined' in front of the given statement. Statement* AssignUndefinedBefore(Statement* s); private: Variable* result_; // We are not tracking result usage via the result_'s use // counts (we leave the accurate computation to the // usage analyzer). Instead we simple remember if // there was ever an assignment to result_. bool result_assigned_; // When visiting a node, we "return" a replacement for that node in // [replacement_]. In many cases this will just be the original node. Statement* replacement_; // To avoid storing to .result all the time, we eliminate some of // the stores by keeping track of whether or not we're sure .result // will be overwritten anyway. This is a bit more tricky than what I // was hoping for. bool is_set_; Zone* zone_; Scope* scope_; AstNodeFactory factory_; // Node visitors. #define DEF_VISIT(type) void Visit##type(type* node) override; AST_NODE_LIST(DEF_VISIT) #undef DEF_VISIT void VisitIterationStatement(IterationStatement* stmt); DEFINE_AST_VISITOR_SUBCLASS_MEMBERS(); }; Statement* Processor::AssignUndefinedBefore(Statement* s) { Expression* result_proxy = factory()->NewVariableProxy(result_); Expression* undef = factory()->NewUndefinedLiteral(RelocInfo::kNoPosition); Expression* assignment = factory()->NewAssignment( Token::ASSIGN, result_proxy, undef, RelocInfo::kNoPosition); Block* b = factory()->NewBlock(NULL, 2, false, RelocInfo::kNoPosition); b->statements()->Add( factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition), zone()); b->statements()->Add(s, zone()); return b; } void Processor::Process(ZoneList<Statement*>* statements) { for (int i = statements->length() - 1; i >= 0; --i) { Visit(statements->at(i)); statements->Set(i, replacement_); } } void Processor::VisitBlock(Block* node) { // An initializer block is the rewritten form of a variable declaration // with initialization expressions. The initializer block contains the // list of assignments corresponding to the initialization expressions. // While unclear from the spec (ECMA-262, 3rd., 12.2), the value of // a variable declaration with initialization expression is 'undefined' // with some JS VMs: For instance, using smjs, print(eval('var x = 7')) // returns 'undefined'. To obtain the same behavior with v8, we need // to prevent rewriting in that case. if (!node->ignore_completion_value()) Process(node->statements()); replacement_ = node; } void Processor::VisitExpressionStatement(ExpressionStatement* node) { // Rewrite : <x>; -> .result = <x>; if (!is_set_) { node->set_expression(SetResult(node->expression())); is_set_ = true; } replacement_ = node; } void Processor::VisitIfStatement(IfStatement* node) { // Rewrite both branches. bool set_after = is_set_; Visit(node->then_statement()); node->set_then_statement(replacement_); bool set_in_then = is_set_; is_set_ = set_after; Visit(node->else_statement()); node->set_else_statement(replacement_); is_set_ = is_set_ && set_in_then; replacement_ = node; if (!is_set_) { is_set_ = true; replacement_ = AssignUndefinedBefore(node); } } void Processor::VisitIterationStatement(IterationStatement* node) { // Rewrite the body. bool set_after = is_set_; is_set_ = false; // We are in a loop, so we can't rely on [set_after]. Visit(node->body()); node->set_body(replacement_); is_set_ = is_set_ && set_after; replacement_ = node; if (!is_set_) { is_set_ = true; replacement_ = AssignUndefinedBefore(node); } } void Processor::VisitDoWhileStatement(DoWhileStatement* node) { VisitIterationStatement(node); } void Processor::VisitWhileStatement(WhileStatement* node) { VisitIterationStatement(node); } void Processor::VisitForStatement(ForStatement* node) { VisitIterationStatement(node); } void Processor::VisitForInStatement(ForInStatement* node) { VisitIterationStatement(node); } void Processor::VisitForOfStatement(ForOfStatement* node) { VisitIterationStatement(node); } void Processor::VisitTryCatchStatement(TryCatchStatement* node) { // Rewrite both try and catch block. bool set_after = is_set_; Visit(node->try_block()); node->set_try_block(static_cast<Block*>(replacement_)); bool set_in_try = is_set_; is_set_ = set_after; Visit(node->catch_block()); node->set_catch_block(static_cast<Block*>(replacement_)); is_set_ = is_set_ && set_in_try; replacement_ = node; if (!is_set_) { is_set_ = true; replacement_ = AssignUndefinedBefore(node); } } void Processor::VisitTryFinallyStatement(TryFinallyStatement* node) { // Rewrite both try and finally block (in reverse order). bool set_after = is_set_; is_set_ = true; // Don't normally need to assign in finally block. Visit(node->finally_block()); node->set_finally_block(replacement_->AsBlock()); { // Save .result value at the beginning of the finally block and restore it // at the end again: ".backup = .result; ...; .result = .backup" // This is necessary because the finally block does not normally contribute // to the completion value. CHECK(scope() != nullptr); Variable* backup = scope()->NewTemporary( factory()->ast_value_factory()->dot_result_string()); Expression* backup_proxy = factory()->NewVariableProxy(backup); Expression* result_proxy = factory()->NewVariableProxy(result_); Expression* save = factory()->NewAssignment( Token::ASSIGN, backup_proxy, result_proxy, RelocInfo::kNoPosition); Expression* restore = factory()->NewAssignment( Token::ASSIGN, result_proxy, backup_proxy, RelocInfo::kNoPosition); node->finally_block()->statements()->InsertAt( 0, factory()->NewExpressionStatement(save, RelocInfo::kNoPosition), zone()); node->finally_block()->statements()->Add( factory()->NewExpressionStatement(restore, RelocInfo::kNoPosition), zone()); } is_set_ = set_after; Visit(node->try_block()); node->set_try_block(replacement_->AsBlock()); replacement_ = node; if (!is_set_) { is_set_ = true; replacement_ = AssignUndefinedBefore(node); } } void Processor::VisitSwitchStatement(SwitchStatement* node) { // Rewrite statements in all case clauses (in reverse order). ZoneList<CaseClause*>* clauses = node->cases(); bool set_after = is_set_; for (int i = clauses->length() - 1; i >= 0; --i) { CaseClause* clause = clauses->at(i); Process(clause->statements()); } is_set_ = is_set_ && set_after; replacement_ = node; if (!is_set_) { is_set_ = true; replacement_ = AssignUndefinedBefore(node); } } void Processor::VisitContinueStatement(ContinueStatement* node) { is_set_ = false; replacement_ = node; } void Processor::VisitBreakStatement(BreakStatement* node) { is_set_ = false; replacement_ = node; } void Processor::VisitWithStatement(WithStatement* node) { Visit(node->statement()); node->set_statement(replacement_); replacement_ = node; if (!is_set_) { is_set_ = true; replacement_ = AssignUndefinedBefore(node); } } void Processor::VisitSloppyBlockFunctionStatement( SloppyBlockFunctionStatement* node) { Visit(node->statement()); node->set_statement(replacement_); replacement_ = node; } void Processor::VisitEmptyStatement(EmptyStatement* node) { replacement_ = node; } void Processor::VisitReturnStatement(ReturnStatement* node) { is_set_ = true; replacement_ = node; } void Processor::VisitDebuggerStatement(DebuggerStatement* node) { replacement_ = node; } // Expressions are never visited. #define DEF_VISIT(type) \ void Processor::Visit##type(type* expr) { UNREACHABLE(); } EXPRESSION_NODE_LIST(DEF_VISIT) #undef DEF_VISIT // Declarations are never visited. #define DEF_VISIT(type) \ void Processor::Visit##type(type* expr) { UNREACHABLE(); } DECLARATION_NODE_LIST(DEF_VISIT) #undef DEF_VISIT // Assumes code has been parsed. Mutates the AST, so the AST should not // continue to be used in the case of failure. bool Rewriter::Rewrite(ParseInfo* info) { FunctionLiteral* function = info->literal(); DCHECK(function != NULL); Scope* scope = function->scope(); DCHECK(scope != NULL); if (!scope->is_script_scope() && !scope->is_eval_scope()) return true; ZoneList<Statement*>* body = function->body(); if (!body->is_empty()) { Variable* result = scope->NewTemporary(info->ast_value_factory()->dot_result_string()); // The name string must be internalized at this point. DCHECK(!result->name().is_null()); Processor processor(info->isolate(), scope, result, info->ast_value_factory()); processor.Process(body); if (processor.HasStackOverflow()) return false; if (processor.result_assigned()) { int pos = RelocInfo::kNoPosition; VariableProxy* result_proxy = processor.factory()->NewVariableProxy(result, pos); Statement* result_statement = processor.factory()->NewReturnStatement(result_proxy, pos); body->Add(result_statement, info->zone()); } } return true; } bool Rewriter::Rewrite(Parser* parser, DoExpression* expr, AstValueFactory* factory) { Block* block = expr->block(); Scope* scope = block->scope(); ZoneList<Statement*>* body = block->statements(); VariableProxy* result = expr->result(); Variable* result_var = result->var(); if (!body->is_empty()) { Processor processor(parser, scope, result_var, factory); processor.Process(body); if (processor.HasStackOverflow()) return false; if (!processor.result_assigned()) { AstNodeFactory* node_factory = processor.factory(); Expression* undef = node_factory->NewUndefinedLiteral(RelocInfo::kNoPosition); Statement* completion = node_factory->NewExpressionStatement( processor.SetResult(undef), expr->position()); body->Add(completion, factory->zone()); } } return true; } } // namespace internal } // namespace v8