// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM64
#include "src/ic/handler-compiler.h"
#include "src/api-arguments.h"
#include "src/field-type.h"
#include "src/ic/call-optimization.h"
#include "src/ic/ic.h"
#include "src/isolate-inl.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void PropertyHandlerCompiler::PushVectorAndSlot(Register vector,
Register slot) {
MacroAssembler* masm = this->masm();
__ Push(vector);
__ Push(slot);
}
void PropertyHandlerCompiler::PopVectorAndSlot(Register vector, Register slot) {
MacroAssembler* masm = this->masm();
__ Pop(slot);
__ Pop(vector);
}
void PropertyHandlerCompiler::DiscardVectorAndSlot() {
MacroAssembler* masm = this->masm();
// Remove vector and slot.
__ Drop(2);
}
void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
MacroAssembler* masm, Label* miss_label, Register receiver,
Handle<Name> name, Register scratch0, Register scratch1) {
DCHECK(!AreAliased(receiver, scratch0, scratch1));
DCHECK(name->IsUniqueName());
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1);
__ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
Label done;
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
Register map = scratch1;
__ Ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ Ldrb(scratch0, FieldMemOperand(map, Map::kBitFieldOffset));
__ Tst(scratch0, kInterceptorOrAccessCheckNeededMask);
__ B(ne, miss_label);
// Check that receiver is a JSObject.
__ Ldrb(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Cmp(scratch0, FIRST_JS_RECEIVER_TYPE);
__ B(lt, miss_label);
// Load properties array.
Register properties = scratch0;
__ Ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ Ldr(map, FieldMemOperand(properties, HeapObject::kMapOffset));
__ JumpIfNotRoot(map, Heap::kHashTableMapRootIndex, miss_label);
NameDictionaryLookupStub::GenerateNegativeLookup(
masm, miss_label, &done, receiver, properties, name, scratch1);
__ Bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
}
void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm, int index, Register result, Label* miss) {
__ LoadNativeContextSlot(index, result);
// Load its initial map. The global functions all have initial maps.
__ Ldr(result,
FieldMemOperand(result, JSFunction::kPrototypeOrInitialMapOffset));
// Load the prototype from the initial map.
__ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
}
void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(
MacroAssembler* masm, Register receiver, Register scratch1,
Register scratch2, Label* miss_label) {
__ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
// TryGetFunctionPrototype can't put the result directly in x0 because the
// 3 inputs registers can't alias and we call this function from
// LoadIC::GenerateFunctionPrototype, where receiver is x0. So we explicitly
// move the result in x0.
__ Mov(x0, scratch1);
__ Ret();
}
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
void PropertyHandlerCompiler::GenerateCheckPropertyCell(
MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
Register scratch, Label* miss) {
Handle<PropertyCell> cell = JSGlobalObject::EnsurePropertyCell(global, name);
Isolate* isolate = masm->isolate();
DCHECK(cell->value()->IsTheHole(isolate));
Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(cell);
__ LoadWeakValue(scratch, weak_cell, miss);
__ Ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
__ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, miss);
}
static void PushInterceptorArguments(MacroAssembler* masm, Register receiver,
Register holder, Register name,
Handle<JSObject> holder_obj) {
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 1);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 2);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 3);
__ Push(name, receiver, holder);
}
static void CompileCallLoadPropertyWithInterceptor(
MacroAssembler* masm, Register receiver, Register holder, Register name,
Handle<JSObject> holder_obj, Runtime::FunctionId id) {
DCHECK(NamedLoadHandlerCompiler::kInterceptorArgsLength ==
Runtime::FunctionForId(id)->nargs);
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
__ CallRuntime(id);
}
// Generate call to api function.
void PropertyHandlerCompiler::GenerateApiAccessorCall(
MacroAssembler* masm, const CallOptimization& optimization,
Handle<Map> receiver_map, Register receiver, Register scratch,
bool is_store, Register store_parameter, Register accessor_holder,
int accessor_index) {
DCHECK(!AreAliased(accessor_holder, scratch));
DCHECK(!AreAliased(receiver, scratch));
MacroAssembler::PushPopQueue queue(masm);
queue.Queue(receiver);
// Write the arguments to the stack frame.
if (is_store) {
DCHECK(!receiver.is(store_parameter));
DCHECK(!scratch.is(store_parameter));
queue.Queue(store_parameter);
}
queue.PushQueued();
DCHECK(optimization.is_simple_api_call());
// Abi for CallApiCallbackStub.
Register callee = x0;
Register data = x4;
Register holder = x2;
Register api_function_address = x1;
// Put callee in place.
__ LoadAccessor(callee, accessor_holder, accessor_index,
is_store ? ACCESSOR_SETTER : ACCESSOR_GETTER);
// Put holder in place.
CallOptimization::HolderLookup holder_lookup;
int holder_depth = 0;
optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup,
&holder_depth);
switch (holder_lookup) {
case CallOptimization::kHolderIsReceiver:
__ Mov(holder, receiver);
break;
case CallOptimization::kHolderFound:
__ Ldr(holder, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ Ldr(holder, FieldMemOperand(holder, Map::kPrototypeOffset));
for (int i = 1; i < holder_depth; i++) {
__ Ldr(holder, FieldMemOperand(holder, HeapObject::kMapOffset));
__ Ldr(holder, FieldMemOperand(holder, Map::kPrototypeOffset));
}
break;
case CallOptimization::kHolderNotFound:
UNREACHABLE();
break;
}
Isolate* isolate = masm->isolate();
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
bool call_data_undefined = false;
// Put call data in place.
if (api_call_info->data()->IsUndefined(isolate)) {
call_data_undefined = true;
__ LoadRoot(data, Heap::kUndefinedValueRootIndex);
} else {
if (optimization.is_constant_call()) {
__ Ldr(data,
FieldMemOperand(callee, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(data,
FieldMemOperand(data, SharedFunctionInfo::kFunctionDataOffset));
__ Ldr(data,
FieldMemOperand(data, FunctionTemplateInfo::kCallCodeOffset));
} else {
__ Ldr(data,
FieldMemOperand(callee, FunctionTemplateInfo::kCallCodeOffset));
}
__ Ldr(data, FieldMemOperand(data, CallHandlerInfo::kDataOffset));
}
if (api_call_info->fast_handler()->IsCode()) {
// Just tail call into the fast handler if present.
__ Jump(handle(Code::cast(api_call_info->fast_handler())),
RelocInfo::CODE_TARGET);
return;
}
// Put api_function_address in place.
Address function_address = v8::ToCData<Address>(api_call_info->callback());
ApiFunction fun(function_address);
ExternalReference ref = ExternalReference(
&fun, ExternalReference::DIRECT_API_CALL, masm->isolate());
__ Mov(api_function_address, ref);
// Jump to stub.
CallApiCallbackStub stub(isolate, is_store, call_data_undefined,
!optimization.is_constant_call());
__ TailCallStub(&stub);
}
void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder,
int accessor_index, int expected_arguments, Register scratch) {
// ----------- S t a t e -------------
// -- lr : return address
// -----------------------------------
Label miss;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save context register
__ Push(cp);
// Save value register, so we can restore it later.
__ Push(value());
if (accessor_index >= 0) {
DCHECK(!AreAliased(holder, scratch));
DCHECK(!AreAliased(receiver, scratch));
DCHECK(!AreAliased(value(), scratch));
// Call the JavaScript setter with receiver and value on the stack.
if (map->IsJSGlobalObjectMap()) {
// Swap in the global receiver.
__ Ldr(scratch,
FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
receiver = scratch;
}
__ Push(receiver, value());
__ LoadAccessor(x1, holder, accessor_index, ACCESSOR_SETTER);
__ Mov(x0, 1);
__ Call(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
}
// We have to return the passed value, not the return value of the setter.
__ Pop(x0);
// Restore context register.
__ Pop(cp);
}
__ Ret();
}
void NamedLoadHandlerCompiler::GenerateLoadViaGetter(
MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder,
int accessor_index, int expected_arguments, Register scratch) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save context register
__ Push(cp);
if (accessor_index >= 0) {
DCHECK(!AreAliased(holder, scratch));
DCHECK(!AreAliased(receiver, scratch));
// Call the JavaScript getter with the receiver on the stack.
if (map->IsJSGlobalObjectMap()) {
// Swap in the global receiver.
__ Ldr(scratch,
FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
receiver = scratch;
}
__ Push(receiver);
__ LoadAccessor(x1, holder, accessor_index, ACCESSOR_GETTER);
__ Mov(x0, 0);
__ Call(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
}
// Restore context register.
__ Pop(cp);
}
__ Ret();
}
static void StoreIC_PushArgs(MacroAssembler* masm) {
__ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
StoreDescriptor::ValueRegister(),
VectorStoreICDescriptor::SlotRegister(),
VectorStoreICDescriptor::VectorRegister());
}
void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) {
StoreIC_PushArgs(masm);
// The slow case calls into the runtime to complete the store without causing
// an IC miss that would otherwise cause a transition to the generic stub.
__ TailCallRuntime(Runtime::kStoreIC_Slow);
}
void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) {
ASM_LOCATION("ElementHandlerCompiler::GenerateStoreSlow");
StoreIC_PushArgs(masm);
// The slow case calls into the runtime to complete the store without causing
// an IC miss that would otherwise cause a transition to the generic stub.
__ TailCallRuntime(Runtime::kKeyedStoreIC_Slow);
}
#undef __
#define __ ACCESS_MASM(masm())
Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal(
Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) {
Label miss;
if (IC::ICUseVector(kind())) {
PushVectorAndSlot();
}
FrontendHeader(receiver(), name, &miss, DONT_RETURN_ANYTHING);
// Get the value from the cell.
Register result = StoreDescriptor::ValueRegister();
Handle<WeakCell> weak_cell = factory()->NewWeakCell(cell);
__ LoadWeakValue(result, weak_cell, &miss);
__ Ldr(result, FieldMemOperand(result, PropertyCell::kValueOffset));
// Check for deleted property if property can actually be deleted.
if (is_configurable) {
__ JumpIfRoot(result, Heap::kTheHoleValueRootIndex, &miss);
}
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->ic_named_load_global_stub(), 1, x1, x3);
if (IC::ICUseVector(kind())) {
DiscardVectorAndSlot();
}
__ Ret();
FrontendFooter(name, &miss);
// Return the generated code.
return GetCode(kind(), name);
}
Register NamedStoreHandlerCompiler::value() {
return StoreDescriptor::ValueRegister();
}
void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
Handle<Name> name) {
if (!label->is_unused()) {
__ Bind(label);
__ Mov(this->name(), Operand(name));
}
}
void NamedStoreHandlerCompiler::GenerateRestoreName(Handle<Name> name) {
__ Mov(this->name(), Operand(name));
}
void NamedStoreHandlerCompiler::RearrangeVectorAndSlot(
Register current_map, Register destination_map) {
DCHECK(false); // Not implemented.
}
void NamedStoreHandlerCompiler::GenerateRestoreMap(Handle<Map> transition,
Register map_reg,
Register scratch,
Label* miss) {
Handle<WeakCell> cell = Map::WeakCellForMap(transition);
DCHECK(!map_reg.is(scratch));
__ LoadWeakValue(map_reg, cell, miss);
if (transition->CanBeDeprecated()) {
__ Ldrsw(scratch, FieldMemOperand(map_reg, Map::kBitField3Offset));
__ TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, miss);
}
}
void NamedStoreHandlerCompiler::GenerateConstantCheck(Register map_reg,
int descriptor,
Register value_reg,
Register scratch,
Label* miss_label) {
DCHECK(!map_reg.is(scratch));
DCHECK(!map_reg.is(value_reg));
DCHECK(!value_reg.is(scratch));
__ LoadInstanceDescriptors(map_reg, scratch);
__ Ldr(scratch,
FieldMemOperand(scratch, DescriptorArray::GetValueOffset(descriptor)));
__ Cmp(value_reg, scratch);
__ B(ne, miss_label);
}
void NamedStoreHandlerCompiler::GenerateFieldTypeChecks(FieldType* field_type,
Register value_reg,
Label* miss_label) {
Register map_reg = scratch1();
Register scratch = scratch2();
DCHECK(!value_reg.is(map_reg));
DCHECK(!value_reg.is(scratch));
__ JumpIfSmi(value_reg, miss_label);
if (field_type->IsClass()) {
__ Ldr(map_reg, FieldMemOperand(value_reg, HeapObject::kMapOffset));
__ CmpWeakValue(map_reg, Map::WeakCellForMap(field_type->AsClass()),
scratch);
__ B(ne, miss_label);
}
}
Register PropertyHandlerCompiler::CheckPrototypes(
Register object_reg, Register holder_reg, Register scratch1,
Register scratch2, Handle<Name> name, Label* miss, PrototypeCheckType check,
ReturnHolder return_what) {
Handle<Map> receiver_map = map();
// object_reg and holder_reg registers can alias.
DCHECK(!AreAliased(object_reg, scratch1, scratch2));
DCHECK(!AreAliased(holder_reg, scratch1, scratch2));
Handle<Cell> validity_cell =
Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate());
if (!validity_cell.is_null()) {
DCHECK_EQ(Smi::FromInt(Map::kPrototypeChainValid), validity_cell->value());
__ Mov(scratch1, Operand(validity_cell));
__ Ldr(scratch1, FieldMemOperand(scratch1, Cell::kValueOffset));
__ Cmp(scratch1, Operand(Smi::FromInt(Map::kPrototypeChainValid)));
__ B(ne, miss);
}
// The prototype chain of primitives (and their JSValue wrappers) depends
// on the native context, which can't be guarded by validity cells.
// |object_reg| holds the native context specific prototype in this case;
// we need to check its map.
if (check == CHECK_ALL_MAPS) {
__ Ldr(scratch1, FieldMemOperand(object_reg, HeapObject::kMapOffset));
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
__ CmpWeakValue(scratch1, cell, scratch2);
__ B(ne, miss);
}
// Keep track of the current object in register reg.
Register reg = object_reg;
int depth = 0;
Handle<JSObject> current = Handle<JSObject>::null();
if (receiver_map->IsJSGlobalObjectMap()) {
current = isolate()->global_object();
}
// Check access rights to the global object. This has to happen after
// the map check so that we know that the object is actually a global
// object.
// This allows us to install generated handlers for accesses to the
// global proxy (as opposed to using slow ICs). See corresponding code
// in LookupForRead().
if (receiver_map->IsJSGlobalProxyMap()) {
UseScratchRegisterScope temps(masm());
__ CheckAccessGlobalProxy(reg, scratch2, temps.AcquireX(), miss);
}
Handle<JSObject> prototype = Handle<JSObject>::null();
Handle<Map> current_map = receiver_map;
Handle<Map> holder_map(holder()->map());
// Traverse the prototype chain and check the maps in the prototype chain for
// fast and global objects or do negative lookup for normal objects.
while (!current_map.is_identical_to(holder_map)) {
++depth;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
DCHECK(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
prototype = handle(JSObject::cast(current_map->prototype()));
if (current_map->IsJSGlobalObjectMap()) {
GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current),
name, scratch2, miss);
} else if (current_map->is_dictionary_map()) {
DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast.
if (!name->IsUniqueName()) {
DCHECK(name->IsString());
name = factory()->InternalizeString(Handle<String>::cast(name));
}
DCHECK(current.is_null() || (current->property_dictionary()->FindEntry(
name) == NameDictionary::kNotFound));
if (depth > 1) {
// TODO(jkummerow): Cache and re-use weak cell.
__ LoadWeakValue(reg, isolate()->factory()->NewWeakCell(current), miss);
}
GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1,
scratch2);
}
reg = holder_reg; // From now on the object will be in holder_reg.
// Go to the next object in the prototype chain.
current = prototype;
current_map = handle(current->map());
}
DCHECK(!current_map->IsJSGlobalProxyMap());
// Log the check depth.
LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
bool return_holder = return_what == RETURN_HOLDER;
if (return_holder && depth != 0) {
__ LoadWeakValue(reg, isolate()->factory()->NewWeakCell(current), miss);
}
// Return the register containing the holder.
return return_holder ? reg : no_reg;
}
void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ B(&success);
__ Bind(miss);
if (IC::ICUseVector(kind())) {
DCHECK(kind() == Code::LOAD_IC);
PopVectorAndSlot();
}
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ Bind(&success);
}
}
void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ B(&success);
GenerateRestoreName(miss, name);
if (IC::ICUseVector(kind())) PopVectorAndSlot();
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ Bind(&success);
}
}
void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) {
// Return the constant value.
__ LoadObject(x0, value);
__ Ret();
}
void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup(
LookupIterator* it, Register holder_reg) {
DCHECK(!AreAliased(receiver(), this->name(), scratch1(), scratch2(),
scratch3()));
DCHECK(holder()->HasNamedInterceptor());
DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined(isolate()));
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
// Preserve the receiver register explicitly whenever it is different from the
// holder and it is needed should the interceptor return without any result.
// The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD
// case might cause a miss during the prototype check.
bool must_perform_prototype_check =
!holder().is_identical_to(it->GetHolder<JSObject>());
bool must_preserve_receiver_reg =
!receiver().is(holder_reg) &&
(it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check);
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
{
FrameScope frame_scope(masm(), StackFrame::INTERNAL);
if (must_preserve_receiver_reg) {
__ Push(receiver(), holder_reg, this->name());
} else {
__ Push(holder_reg, this->name());
}
InterceptorVectorSlotPush(holder_reg);
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(
masm(), receiver(), holder_reg, this->name(), holder(),
Runtime::kLoadPropertyWithInterceptorOnly);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ JumpIfRoot(x0, Heap::kNoInterceptorResultSentinelRootIndex,
&interceptor_failed);
frame_scope.GenerateLeaveFrame();
__ Ret();
__ Bind(&interceptor_failed);
InterceptorVectorSlotPop(holder_reg);
if (must_preserve_receiver_reg) {
__ Pop(this->name(), holder_reg, receiver());
} else {
__ Pop(this->name(), holder_reg);
}
// Leave the internal frame.
}
GenerateLoadPostInterceptor(it, holder_reg);
}
void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) {
// Call the runtime system to load the interceptor.
DCHECK(holder()->HasNamedInterceptor());
DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined(isolate()));
PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(),
holder());
__ TailCallRuntime(Runtime::kLoadPropertyWithInterceptor);
}
Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
Handle<JSObject> object, Handle<Name> name, Handle<AccessorInfo> callback,
LanguageMode language_mode) {
ASM_LOCATION("NamedStoreHandlerCompiler::CompileStoreCallback");
Register holder_reg = Frontend(name);
// Stub never generated for non-global objects that require access checks.
DCHECK(holder()->IsJSGlobalProxy() || !holder()->IsAccessCheckNeeded());
// receiver() and holder_reg can alias.
DCHECK(!AreAliased(receiver(), scratch1(), scratch2(), value()));
DCHECK(!AreAliased(holder_reg, scratch1(), scratch2(), value()));
// If the callback cannot leak, then push the callback directly,
// otherwise wrap it in a weak cell.
if (callback->data()->IsUndefined(isolate()) || callback->data()->IsSmi()) {
__ Mov(scratch1(), Operand(callback));
} else {
Handle<WeakCell> cell = isolate()->factory()->NewWeakCell(callback);
__ Mov(scratch1(), Operand(cell));
}
__ Mov(scratch2(), Operand(name));
__ Push(receiver(), holder_reg, scratch1(), scratch2(), value());
__ Push(Smi::FromInt(language_mode));
// Do tail-call to the runtime system.
__ TailCallRuntime(Runtime::kStoreCallbackProperty);
// Return the generated code.
return GetCode(kind(), name);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32