// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM64 #include "src/ic/handler-compiler.h" #include "src/api-arguments.h" #include "src/field-type.h" #include "src/ic/call-optimization.h" #include "src/ic/ic.h" #include "src/isolate-inl.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void PropertyHandlerCompiler::PushVectorAndSlot(Register vector, Register slot) { MacroAssembler* masm = this->masm(); __ Push(vector); __ Push(slot); } void PropertyHandlerCompiler::PopVectorAndSlot(Register vector, Register slot) { MacroAssembler* masm = this->masm(); __ Pop(slot); __ Pop(vector); } void PropertyHandlerCompiler::DiscardVectorAndSlot() { MacroAssembler* masm = this->masm(); // Remove vector and slot. __ Drop(2); } void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup( MacroAssembler* masm, Label* miss_label, Register receiver, Handle<Name> name, Register scratch0, Register scratch1) { DCHECK(!AreAliased(receiver, scratch0, scratch1)); DCHECK(name->IsUniqueName()); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1); __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); Label done; const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. Register map = scratch1; __ Ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ Ldrb(scratch0, FieldMemOperand(map, Map::kBitFieldOffset)); __ Tst(scratch0, kInterceptorOrAccessCheckNeededMask); __ B(ne, miss_label); // Check that receiver is a JSObject. __ Ldrb(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Cmp(scratch0, FIRST_JS_RECEIVER_TYPE); __ B(lt, miss_label); // Load properties array. Register properties = scratch0; __ Ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ Ldr(map, FieldMemOperand(properties, HeapObject::kMapOffset)); __ JumpIfNotRoot(map, Heap::kHashTableMapRootIndex, miss_label); NameDictionaryLookupStub::GenerateNegativeLookup( masm, miss_label, &done, receiver, properties, name, scratch1); __ Bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); } void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register result, Label* miss) { __ LoadNativeContextSlot(index, result); // Load its initial map. The global functions all have initial maps. __ Ldr(result, FieldMemOperand(result, JSFunction::kPrototypeOrInitialMapOffset)); // Load the prototype from the initial map. __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); } void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype( MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss_label) { __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label); // TryGetFunctionPrototype can't put the result directly in x0 because the // 3 inputs registers can't alias and we call this function from // LoadIC::GenerateFunctionPrototype, where receiver is x0. So we explicitly // move the result in x0. __ Mov(x0, scratch1); __ Ret(); } // Generate code to check that a global property cell is empty. Create // the property cell at compilation time if no cell exists for the // property. void PropertyHandlerCompiler::GenerateCheckPropertyCell( MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name, Register scratch, Label* miss) { Handle<PropertyCell> cell = JSGlobalObject::EnsurePropertyCell(global, name); Isolate* isolate = masm->isolate(); DCHECK(cell->value()->IsTheHole(isolate)); Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(cell); __ LoadWeakValue(scratch, weak_cell, miss); __ Ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset)); __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, miss); } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, Handle<JSObject> holder_obj) { STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 1); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 2); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 3); __ Push(name, receiver, holder); } static void CompileCallLoadPropertyWithInterceptor( MacroAssembler* masm, Register receiver, Register holder, Register name, Handle<JSObject> holder_obj, Runtime::FunctionId id) { DCHECK(NamedLoadHandlerCompiler::kInterceptorArgsLength == Runtime::FunctionForId(id)->nargs); PushInterceptorArguments(masm, receiver, holder, name, holder_obj); __ CallRuntime(id); } // Generate call to api function. void PropertyHandlerCompiler::GenerateApiAccessorCall( MacroAssembler* masm, const CallOptimization& optimization, Handle<Map> receiver_map, Register receiver, Register scratch, bool is_store, Register store_parameter, Register accessor_holder, int accessor_index) { DCHECK(!AreAliased(accessor_holder, scratch)); DCHECK(!AreAliased(receiver, scratch)); MacroAssembler::PushPopQueue queue(masm); queue.Queue(receiver); // Write the arguments to the stack frame. if (is_store) { DCHECK(!receiver.is(store_parameter)); DCHECK(!scratch.is(store_parameter)); queue.Queue(store_parameter); } queue.PushQueued(); DCHECK(optimization.is_simple_api_call()); // Abi for CallApiCallbackStub. Register callee = x0; Register data = x4; Register holder = x2; Register api_function_address = x1; // Put callee in place. __ LoadAccessor(callee, accessor_holder, accessor_index, is_store ? ACCESSOR_SETTER : ACCESSOR_GETTER); // Put holder in place. CallOptimization::HolderLookup holder_lookup; int holder_depth = 0; optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup, &holder_depth); switch (holder_lookup) { case CallOptimization::kHolderIsReceiver: __ Mov(holder, receiver); break; case CallOptimization::kHolderFound: __ Ldr(holder, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ Ldr(holder, FieldMemOperand(holder, Map::kPrototypeOffset)); for (int i = 1; i < holder_depth; i++) { __ Ldr(holder, FieldMemOperand(holder, HeapObject::kMapOffset)); __ Ldr(holder, FieldMemOperand(holder, Map::kPrototypeOffset)); } break; case CallOptimization::kHolderNotFound: UNREACHABLE(); break; } Isolate* isolate = masm->isolate(); Handle<CallHandlerInfo> api_call_info = optimization.api_call_info(); bool call_data_undefined = false; // Put call data in place. if (api_call_info->data()->IsUndefined(isolate)) { call_data_undefined = true; __ LoadRoot(data, Heap::kUndefinedValueRootIndex); } else { if (optimization.is_constant_call()) { __ Ldr(data, FieldMemOperand(callee, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(data, FieldMemOperand(data, SharedFunctionInfo::kFunctionDataOffset)); __ Ldr(data, FieldMemOperand(data, FunctionTemplateInfo::kCallCodeOffset)); } else { __ Ldr(data, FieldMemOperand(callee, FunctionTemplateInfo::kCallCodeOffset)); } __ Ldr(data, FieldMemOperand(data, CallHandlerInfo::kDataOffset)); } if (api_call_info->fast_handler()->IsCode()) { // Just tail call into the fast handler if present. __ Jump(handle(Code::cast(api_call_info->fast_handler())), RelocInfo::CODE_TARGET); return; } // Put api_function_address in place. Address function_address = v8::ToCData<Address>(api_call_info->callback()); ApiFunction fun(function_address); ExternalReference ref = ExternalReference( &fun, ExternalReference::DIRECT_API_CALL, masm->isolate()); __ Mov(api_function_address, ref); // Jump to stub. CallApiCallbackStub stub(isolate, is_store, call_data_undefined, !optimization.is_constant_call()); __ TailCallStub(&stub); } void NamedStoreHandlerCompiler::GenerateStoreViaSetter( MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder, int accessor_index, int expected_arguments, Register scratch) { // ----------- S t a t e ------------- // -- lr : return address // ----------------------------------- Label miss; { FrameScope scope(masm, StackFrame::INTERNAL); // Save context register __ Push(cp); // Save value register, so we can restore it later. __ Push(value()); if (accessor_index >= 0) { DCHECK(!AreAliased(holder, scratch)); DCHECK(!AreAliased(receiver, scratch)); DCHECK(!AreAliased(value(), scratch)); // Call the JavaScript setter with receiver and value on the stack. if (map->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ Ldr(scratch, FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset)); receiver = scratch; } __ Push(receiver, value()); __ LoadAccessor(x1, holder, accessor_index, ACCESSOR_SETTER); __ Mov(x0, 1); __ Call(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset()); } // We have to return the passed value, not the return value of the setter. __ Pop(x0); // Restore context register. __ Pop(cp); } __ Ret(); } void NamedLoadHandlerCompiler::GenerateLoadViaGetter( MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder, int accessor_index, int expected_arguments, Register scratch) { { FrameScope scope(masm, StackFrame::INTERNAL); // Save context register __ Push(cp); if (accessor_index >= 0) { DCHECK(!AreAliased(holder, scratch)); DCHECK(!AreAliased(receiver, scratch)); // Call the JavaScript getter with the receiver on the stack. if (map->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ Ldr(scratch, FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset)); receiver = scratch; } __ Push(receiver); __ LoadAccessor(x1, holder, accessor_index, ACCESSOR_GETTER); __ Mov(x0, 0); __ Call(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset()); } // Restore context register. __ Pop(cp); } __ Ret(); } static void StoreIC_PushArgs(MacroAssembler* masm) { __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(), StoreDescriptor::ValueRegister(), VectorStoreICDescriptor::SlotRegister(), VectorStoreICDescriptor::VectorRegister()); } void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) { StoreIC_PushArgs(masm); // The slow case calls into the runtime to complete the store without causing // an IC miss that would otherwise cause a transition to the generic stub. __ TailCallRuntime(Runtime::kStoreIC_Slow); } void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) { ASM_LOCATION("ElementHandlerCompiler::GenerateStoreSlow"); StoreIC_PushArgs(masm); // The slow case calls into the runtime to complete the store without causing // an IC miss that would otherwise cause a transition to the generic stub. __ TailCallRuntime(Runtime::kKeyedStoreIC_Slow); } #undef __ #define __ ACCESS_MASM(masm()) Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal( Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) { Label miss; if (IC::ICUseVector(kind())) { PushVectorAndSlot(); } FrontendHeader(receiver(), name, &miss, DONT_RETURN_ANYTHING); // Get the value from the cell. Register result = StoreDescriptor::ValueRegister(); Handle<WeakCell> weak_cell = factory()->NewWeakCell(cell); __ LoadWeakValue(result, weak_cell, &miss); __ Ldr(result, FieldMemOperand(result, PropertyCell::kValueOffset)); // Check for deleted property if property can actually be deleted. if (is_configurable) { __ JumpIfRoot(result, Heap::kTheHoleValueRootIndex, &miss); } Counters* counters = isolate()->counters(); __ IncrementCounter(counters->ic_named_load_global_stub(), 1, x1, x3); if (IC::ICUseVector(kind())) { DiscardVectorAndSlot(); } __ Ret(); FrontendFooter(name, &miss); // Return the generated code. return GetCode(kind(), name); } Register NamedStoreHandlerCompiler::value() { return StoreDescriptor::ValueRegister(); } void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label, Handle<Name> name) { if (!label->is_unused()) { __ Bind(label); __ Mov(this->name(), Operand(name)); } } void NamedStoreHandlerCompiler::GenerateRestoreName(Handle<Name> name) { __ Mov(this->name(), Operand(name)); } void NamedStoreHandlerCompiler::RearrangeVectorAndSlot( Register current_map, Register destination_map) { DCHECK(false); // Not implemented. } void NamedStoreHandlerCompiler::GenerateRestoreMap(Handle<Map> transition, Register map_reg, Register scratch, Label* miss) { Handle<WeakCell> cell = Map::WeakCellForMap(transition); DCHECK(!map_reg.is(scratch)); __ LoadWeakValue(map_reg, cell, miss); if (transition->CanBeDeprecated()) { __ Ldrsw(scratch, FieldMemOperand(map_reg, Map::kBitField3Offset)); __ TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, miss); } } void NamedStoreHandlerCompiler::GenerateConstantCheck(Register map_reg, int descriptor, Register value_reg, Register scratch, Label* miss_label) { DCHECK(!map_reg.is(scratch)); DCHECK(!map_reg.is(value_reg)); DCHECK(!value_reg.is(scratch)); __ LoadInstanceDescriptors(map_reg, scratch); __ Ldr(scratch, FieldMemOperand(scratch, DescriptorArray::GetValueOffset(descriptor))); __ Cmp(value_reg, scratch); __ B(ne, miss_label); } void NamedStoreHandlerCompiler::GenerateFieldTypeChecks(FieldType* field_type, Register value_reg, Label* miss_label) { Register map_reg = scratch1(); Register scratch = scratch2(); DCHECK(!value_reg.is(map_reg)); DCHECK(!value_reg.is(scratch)); __ JumpIfSmi(value_reg, miss_label); if (field_type->IsClass()) { __ Ldr(map_reg, FieldMemOperand(value_reg, HeapObject::kMapOffset)); __ CmpWeakValue(map_reg, Map::WeakCellForMap(field_type->AsClass()), scratch); __ B(ne, miss_label); } } Register PropertyHandlerCompiler::CheckPrototypes( Register object_reg, Register holder_reg, Register scratch1, Register scratch2, Handle<Name> name, Label* miss, PrototypeCheckType check, ReturnHolder return_what) { Handle<Map> receiver_map = map(); // object_reg and holder_reg registers can alias. DCHECK(!AreAliased(object_reg, scratch1, scratch2)); DCHECK(!AreAliased(holder_reg, scratch1, scratch2)); Handle<Cell> validity_cell = Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate()); if (!validity_cell.is_null()) { DCHECK_EQ(Smi::FromInt(Map::kPrototypeChainValid), validity_cell->value()); __ Mov(scratch1, Operand(validity_cell)); __ Ldr(scratch1, FieldMemOperand(scratch1, Cell::kValueOffset)); __ Cmp(scratch1, Operand(Smi::FromInt(Map::kPrototypeChainValid))); __ B(ne, miss); } // The prototype chain of primitives (and their JSValue wrappers) depends // on the native context, which can't be guarded by validity cells. // |object_reg| holds the native context specific prototype in this case; // we need to check its map. if (check == CHECK_ALL_MAPS) { __ Ldr(scratch1, FieldMemOperand(object_reg, HeapObject::kMapOffset)); Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map); __ CmpWeakValue(scratch1, cell, scratch2); __ B(ne, miss); } // Keep track of the current object in register reg. Register reg = object_reg; int depth = 0; Handle<JSObject> current = Handle<JSObject>::null(); if (receiver_map->IsJSGlobalObjectMap()) { current = isolate()->global_object(); } // Check access rights to the global object. This has to happen after // the map check so that we know that the object is actually a global // object. // This allows us to install generated handlers for accesses to the // global proxy (as opposed to using slow ICs). See corresponding code // in LookupForRead(). if (receiver_map->IsJSGlobalProxyMap()) { UseScratchRegisterScope temps(masm()); __ CheckAccessGlobalProxy(reg, scratch2, temps.AcquireX(), miss); } Handle<JSObject> prototype = Handle<JSObject>::null(); Handle<Map> current_map = receiver_map; Handle<Map> holder_map(holder()->map()); // Traverse the prototype chain and check the maps in the prototype chain for // fast and global objects or do negative lookup for normal objects. while (!current_map.is_identical_to(holder_map)) { ++depth; // Only global objects and objects that do not require access // checks are allowed in stubs. DCHECK(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); prototype = handle(JSObject::cast(current_map->prototype())); if (current_map->IsJSGlobalObjectMap()) { GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current), name, scratch2, miss); } else if (current_map->is_dictionary_map()) { DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast. if (!name->IsUniqueName()) { DCHECK(name->IsString()); name = factory()->InternalizeString(Handle<String>::cast(name)); } DCHECK(current.is_null() || (current->property_dictionary()->FindEntry( name) == NameDictionary::kNotFound)); if (depth > 1) { // TODO(jkummerow): Cache and re-use weak cell. __ LoadWeakValue(reg, isolate()->factory()->NewWeakCell(current), miss); } GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); } reg = holder_reg; // From now on the object will be in holder_reg. // Go to the next object in the prototype chain. current = prototype; current_map = handle(current->map()); } DCHECK(!current_map->IsJSGlobalProxyMap()); // Log the check depth. LOG(isolate(), IntEvent("check-maps-depth", depth + 1)); bool return_holder = return_what == RETURN_HOLDER; if (return_holder && depth != 0) { __ LoadWeakValue(reg, isolate()->factory()->NewWeakCell(current), miss); } // Return the register containing the holder. return return_holder ? reg : no_reg; } void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) { if (!miss->is_unused()) { Label success; __ B(&success); __ Bind(miss); if (IC::ICUseVector(kind())) { DCHECK(kind() == Code::LOAD_IC); PopVectorAndSlot(); } TailCallBuiltin(masm(), MissBuiltin(kind())); __ Bind(&success); } } void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) { if (!miss->is_unused()) { Label success; __ B(&success); GenerateRestoreName(miss, name); if (IC::ICUseVector(kind())) PopVectorAndSlot(); TailCallBuiltin(masm(), MissBuiltin(kind())); __ Bind(&success); } } void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) { // Return the constant value. __ LoadObject(x0, value); __ Ret(); } void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup( LookupIterator* it, Register holder_reg) { DCHECK(!AreAliased(receiver(), this->name(), scratch1(), scratch2(), scratch3())); DCHECK(holder()->HasNamedInterceptor()); DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined(isolate())); // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1())); // Preserve the receiver register explicitly whenever it is different from the // holder and it is needed should the interceptor return without any result. // The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD // case might cause a miss during the prototype check. bool must_perform_prototype_check = !holder().is_identical_to(it->GetHolder<JSObject>()); bool must_preserve_receiver_reg = !receiver().is(holder_reg) && (it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. { FrameScope frame_scope(masm(), StackFrame::INTERNAL); if (must_preserve_receiver_reg) { __ Push(receiver(), holder_reg, this->name()); } else { __ Push(holder_reg, this->name()); } InterceptorVectorSlotPush(holder_reg); // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor( masm(), receiver(), holder_reg, this->name(), holder(), Runtime::kLoadPropertyWithInterceptorOnly); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ JumpIfRoot(x0, Heap::kNoInterceptorResultSentinelRootIndex, &interceptor_failed); frame_scope.GenerateLeaveFrame(); __ Ret(); __ Bind(&interceptor_failed); InterceptorVectorSlotPop(holder_reg); if (must_preserve_receiver_reg) { __ Pop(this->name(), holder_reg, receiver()); } else { __ Pop(this->name(), holder_reg); } // Leave the internal frame. } GenerateLoadPostInterceptor(it, holder_reg); } void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) { // Call the runtime system to load the interceptor. DCHECK(holder()->HasNamedInterceptor()); DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined(isolate())); PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(), holder()); __ TailCallRuntime(Runtime::kLoadPropertyWithInterceptor); } Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback( Handle<JSObject> object, Handle<Name> name, Handle<AccessorInfo> callback, LanguageMode language_mode) { ASM_LOCATION("NamedStoreHandlerCompiler::CompileStoreCallback"); Register holder_reg = Frontend(name); // Stub never generated for non-global objects that require access checks. DCHECK(holder()->IsJSGlobalProxy() || !holder()->IsAccessCheckNeeded()); // receiver() and holder_reg can alias. DCHECK(!AreAliased(receiver(), scratch1(), scratch2(), value())); DCHECK(!AreAliased(holder_reg, scratch1(), scratch2(), value())); // If the callback cannot leak, then push the callback directly, // otherwise wrap it in a weak cell. if (callback->data()->IsUndefined(isolate()) || callback->data()->IsSmi()) { __ Mov(scratch1(), Operand(callback)); } else { Handle<WeakCell> cell = isolate()->factory()->NewWeakCell(callback); __ Mov(scratch1(), Operand(cell)); } __ Mov(scratch2(), Operand(name)); __ Push(receiver(), holder_reg, scratch1(), scratch2(), value()); __ Push(Smi::FromInt(language_mode)); // Do tail-call to the runtime system. __ TailCallRuntime(Runtime::kStoreCallbackProperty); // Return the generated code. return GetCode(kind(), name); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_IA32