/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/videostab/motion_stabilizing.hpp"
#include "opencv2/videostab/global_motion.hpp"
#include "opencv2/videostab/ring_buffer.hpp"
#include "clp.hpp"
namespace cv
{
namespace videostab
{
void MotionStabilizationPipeline::stabilize(
int size, const std::vector<Mat> &motions, std::pair<int,int> range, Mat *stabilizationMotions)
{
std::vector<Mat> updatedMotions(motions.size());
for (size_t i = 0; i < motions.size(); ++i)
updatedMotions[i] = motions[i].clone();
std::vector<Mat> stabilizationMotions_(size);
for (int i = 0; i < size; ++i)
stabilizationMotions[i] = Mat::eye(3, 3, CV_32F);
for (size_t i = 0; i < stabilizers_.size(); ++i)
{
stabilizers_[i]->stabilize(size, updatedMotions, range, &stabilizationMotions_[0]);
for (int k = 0; k < size; ++k)
stabilizationMotions[k] = stabilizationMotions_[k] * stabilizationMotions[k];
for (int j = 0; j + 1 < size; ++j)
{
Mat S0 = stabilizationMotions[j];
Mat S1 = stabilizationMotions[j+1];
at(j, updatedMotions) = S1 * at(j, updatedMotions) * S0.inv();
}
}
}
void MotionFilterBase::stabilize(
int size, const std::vector<Mat> &motions, std::pair<int,int> range, Mat *stabilizationMotions)
{
for (int i = 0; i < size; ++i)
stabilizationMotions[i] = stabilize(i, motions, range);
}
void GaussianMotionFilter::setParams(int _radius, float _stdev)
{
radius_ = _radius;
stdev_ = _stdev > 0.f ? _stdev : std::sqrt(static_cast<float>(_radius));
float sum = 0;
weight_.resize(2*radius_ + 1);
for (int i = -radius_; i <= radius_; ++i)
sum += weight_[radius_ + i] = std::exp(-i*i/(stdev_*stdev_));
for (int i = -radius_; i <= radius_; ++i)
weight_[radius_ + i] /= sum;
}
Mat GaussianMotionFilter::stabilize(int idx, const std::vector<Mat> &motions, std::pair<int,int> range)
{
const Mat &cur = at(idx, motions);
Mat res = Mat::zeros(cur.size(), cur.type());
float sum = 0.f;
int iMin = std::max(idx - radius_, range.first);
int iMax = std::min(idx + radius_, range.second);
for (int i = iMin; i <= iMax; ++i)
{
res += weight_[radius_ + i - idx] * getMotion(idx, i, motions);
sum += weight_[radius_ + i - idx];
}
return sum > 0.f ? res / sum : Mat::eye(cur.size(), cur.type());
}
LpMotionStabilizer::LpMotionStabilizer(MotionModel model)
{
setMotionModel(model);
setFrameSize(Size(0,0));
setTrimRatio(0.1f);
setWeight1(1);
setWeight2(10);
setWeight3(100);
setWeight4(100);
}
#ifndef HAVE_CLP
void LpMotionStabilizer::stabilize(int, const std::vector<Mat>&, std::pair<int,int>, Mat*)
{
CV_Error(Error::StsError, "The library is built without Clp support");
}
#else
void LpMotionStabilizer::stabilize(
int size, const std::vector<Mat> &motions, std::pair<int,int> /*range*/, Mat *stabilizationMotions)
{
CV_Assert(model_ <= MM_AFFINE);
int N = size;
const std::vector<Mat> &M = motions;
Mat *S = stabilizationMotions;
double w = frameSize_.width, h = frameSize_.height;
double tw = w * trimRatio_, th = h * trimRatio_;
int ncols = 4*N + 6*(N-1) + 6*(N-2) + 6*(N-3);
int nrows = 8*N + 2*6*(N-1) + 2*6*(N-2) + 2*6*(N-3);
rows_.clear();
cols_.clear();
elems_.clear();
obj_.assign(ncols, 0);
collb_.assign(ncols, -INF);
colub_.assign(ncols, INF);
int c = 4*N;
// for each slack variable e[t] (error bound)
for (int t = 0; t < N-1; ++t, c += 6)
{
// e[t](0,0)
obj_[c] = w4_*w1_;
collb_[c] = 0;
// e[t](0,1)
obj_[c+1] = w4_*w1_;
collb_[c+1] = 0;
// e[t](0,2)
obj_[c+2] = w1_;
collb_[c+2] = 0;
// e[t](1,0)
obj_[c+3] = w4_*w1_;
collb_[c+3] = 0;
// e[t](1,1)
obj_[c+4] = w4_*w1_;
collb_[c+4] = 0;
// e[t](1,2)
obj_[c+5] = w1_;
collb_[c+5] = 0;
}
for (int t = 0; t < N-2; ++t, c += 6)
{
// e[t](0,0)
obj_[c] = w4_*w2_;
collb_[c] = 0;
// e[t](0,1)
obj_[c+1] = w4_*w2_;
collb_[c+1] = 0;
// e[t](0,2)
obj_[c+2] = w2_;
collb_[c+2] = 0;
// e[t](1,0)
obj_[c+3] = w4_*w2_;
collb_[c+3] = 0;
// e[t](1,1)
obj_[c+4] = w4_*w2_;
collb_[c+4] = 0;
// e[t](1,2)
obj_[c+5] = w2_;
collb_[c+5] = 0;
}
for (int t = 0; t < N-3; ++t, c += 6)
{
// e[t](0,0)
obj_[c] = w4_*w3_;
collb_[c] = 0;
// e[t](0,1)
obj_[c+1] = w4_*w3_;
collb_[c+1] = 0;
// e[t](0,2)
obj_[c+2] = w3_;
collb_[c+2] = 0;
// e[t](1,0)
obj_[c+3] = w4_*w3_;
collb_[c+3] = 0;
// e[t](1,1)
obj_[c+4] = w4_*w3_;
collb_[c+4] = 0;
// e[t](1,2)
obj_[c+5] = w3_;
collb_[c+5] = 0;
}
elems_.clear();
rowlb_.assign(nrows, -INF);
rowub_.assign(nrows, INF);
int r = 0;
// frame corners
const Point2d pt[] = {Point2d(0,0), Point2d(w,0), Point2d(w,h), Point2d(0,h)};
// for each frame
for (int t = 0; t < N; ++t)
{
c = 4*t;
// for each frame corner
for (int i = 0; i < 4; ++i, r += 2)
{
set(r, c, pt[i].x); set(r, c+1, pt[i].y); set(r, c+2, 1);
set(r+1, c, pt[i].y); set(r+1, c+1, -pt[i].x); set(r+1, c+3, 1);
rowlb_[r] = pt[i].x-tw;
rowub_[r] = pt[i].x+tw;
rowlb_[r+1] = pt[i].y-th;
rowub_[r+1] = pt[i].y+th;
}
}
// for each S[t+1]M[t] - S[t] - e[t] <= 0 condition
for (int t = 0; t < N-1; ++t, r += 6)
{
Mat_<float> M0 = at(t,M);
c = 4*t;
set(r, c, -1);
set(r+1, c+1, -1);
set(r+2, c+2, -1);
set(r+3, c+1, 1);
set(r+4, c, -1);
set(r+5, c+3, -1);
c = 4*(t+1);
set(r, c, M0(0,0)); set(r, c+1, M0(1,0));
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1));
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1);
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0));
set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1));
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, -1);
rowub_[r] = 0;
rowub_[r+1] = 0;
rowub_[r+2] = 0;
rowub_[r+3] = 0;
rowub_[r+4] = 0;
rowub_[r+5] = 0;
}
// for each 0 <= S[t+1]M[t] - S[t] + e[t] condition
for (int t = 0; t < N-1; ++t, r += 6)
{
Mat_<float> M0 = at(t,M);
c = 4*t;
set(r, c, -1);
set(r+1, c+1, -1);
set(r+2, c+2, -1);
set(r+3, c+1, 1);
set(r+4, c, -1);
set(r+5, c+3, -1);
c = 4*(t+1);
set(r, c, M0(0,0)); set(r, c+1, M0(1,0));
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1));
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1);
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0));
set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1));
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, 1);
rowlb_[r] = 0;
rowlb_[r+1] = 0;
rowlb_[r+2] = 0;
rowlb_[r+3] = 0;
rowlb_[r+4] = 0;
rowlb_[r+5] = 0;
}
// for each S[t+2]M[t+1] - S[t+1]*(I+M[t]) + S[t] - e[t] <= 0 condition
for (int t = 0; t < N-2; ++t, r += 6)
{
Mat_<float> M0 = at(t,M), M1 = at(t+1,M);
c = 4*t;
set(r, c, 1);
set(r+1, c+1, 1);
set(r+2, c+2, 1);
set(r+3, c+1, -1);
set(r+4, c, 1);
set(r+5, c+3, 1);
c = 4*(t+1);
set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0));
set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1);
set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2);
set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1);
set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1));
set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2);
c = 4*(t+2);
set(r, c, M1(0,0)); set(r, c+1, M1(1,0));
set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1));
set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1);
set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0));
set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1));
set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*(N-1) + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, -1);
rowub_[r] = 0;
rowub_[r+1] = 0;
rowub_[r+2] = 0;
rowub_[r+3] = 0;
rowub_[r+4] = 0;
rowub_[r+5] = 0;
}
// for each 0 <= S[t+2]M[t+1]] - S[t+1]*(I+M[t]) + S[t] + e[t] condition
for (int t = 0; t < N-2; ++t, r += 6)
{
Mat_<float> M0 = at(t,M), M1 = at(t+1,M);
c = 4*t;
set(r, c, 1);
set(r+1, c+1, 1);
set(r+2, c+2, 1);
set(r+3, c+1, -1);
set(r+4, c, 1);
set(r+5, c+3, 1);
c = 4*(t+1);
set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0));
set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1);
set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2);
set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1);
set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1));
set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2);
c = 4*(t+2);
set(r, c, M1(0,0)); set(r, c+1, M1(1,0));
set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1));
set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1);
set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0));
set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1));
set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*(N-1) + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, 1);
rowlb_[r] = 0;
rowlb_[r+1] = 0;
rowlb_[r+2] = 0;
rowlb_[r+3] = 0;
rowlb_[r+4] = 0;
rowlb_[r+5] = 0;
}
// for each S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) - S[t] - e[t] <= 0 condition
for (int t = 0; t < N-3; ++t, r += 6)
{
Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M);
c = 4*t;
set(r, c, -1);
set(r+1, c+1, -1);
set(r+2, c+2, -1);
set(r+3, c+1, 1);
set(r+4, c, -1);
set(r+5, c+3, -1);
c = 4*(t+1);
set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0));
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2);
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3);
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2);
set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1));
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3);
c = 4*(t+2);
set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0));
set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1);
set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3);
set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1);
set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1));
set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3);
c = 4*(t+3);
set(r, c, M2(0,0)); set(r, c+1, M2(1,0));
set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1));
set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1);
set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0));
set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1));
set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*(N-1) + 6*(N-2) + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, -1);
rowub_[r] = 0;
rowub_[r+1] = 0;
rowub_[r+2] = 0;
rowub_[r+3] = 0;
rowub_[r+4] = 0;
rowub_[r+5] = 0;
}
// for each 0 <= S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) + e[t] condition
for (int t = 0; t < N-3; ++t, r += 6)
{
Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M);
c = 4*t;
set(r, c, -1);
set(r+1, c+1, -1);
set(r+2, c+2, -1);
set(r+3, c+1, 1);
set(r+4, c, -1);
set(r+5, c+3, -1);
c = 4*(t+1);
set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0));
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2);
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3);
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2);
set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1));
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3);
c = 4*(t+2);
set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0));
set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1);
set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3);
set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1);
set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1));
set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3);
c = 4*(t+3);
set(r, c, M2(0,0)); set(r, c+1, M2(1,0));
set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1));
set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1);
set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0));
set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1));
set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*(N-1) + 6*(N-2) + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, 1);
rowlb_[r] = 0;
rowlb_[r+1] = 0;
rowlb_[r+2] = 0;
rowlb_[r+3] = 0;
rowlb_[r+4] = 0;
rowlb_[r+5] = 0;
}
// solve
CoinPackedMatrix A(true, &rows_[0], &cols_[0], &elems_[0], elems_.size());
A.setDimensions(nrows, ncols);
ClpSimplex model(false);
model.loadProblem(A, &collb_[0], &colub_[0], &obj_[0], &rowlb_[0], &rowub_[0]);
ClpDualRowSteepest dualSteep(1);
model.setDualRowPivotAlgorithm(dualSteep);
ClpPrimalColumnSteepest primalSteep(1);
model.setPrimalColumnPivotAlgorithm(primalSteep);
model.scaling(1);
ClpPresolve presolveInfo;
Ptr<ClpSimplex> presolvedModel(presolveInfo.presolvedModel(model));
if (presolvedModel)
{
presolvedModel->dual();
presolveInfo.postsolve(true);
model.checkSolution();
model.primal(1);
}
else
{
model.dual();
model.checkSolution();
model.primal(1);
}
// save results
const double *sol = model.getColSolution();
c = 0;
for (int t = 0; t < N; ++t, c += 4)
{
Mat_<float> S0 = Mat::eye(3, 3, CV_32F);
S0(1,1) = S0(0,0) = sol[c];
S0(0,1) = sol[c+1];
S0(1,0) = -sol[c+1];
S0(0,2) = sol[c+2];
S0(1,2) = sol[c+3];
S[t] = S0;
}
}
#endif // #ifndef HAVE_CLP
static inline int areaSign(Point2f a, Point2f b, Point2f c)
{
double area = (b-a).cross(c-a);
if (area < -1e-5) return -1;
if (area > 1e-5) return 1;
return 0;
}
static inline bool segmentsIntersect(Point2f a, Point2f b, Point2f c, Point2f d)
{
return areaSign(a,b,c) * areaSign(a,b,d) < 0 &&
areaSign(c,d,a) * areaSign(c,d,b) < 0;
}
// Checks if rect a (with sides parallel to axis) is inside rect b (arbitrary).
// Rects must be passed in the [(0,0), (w,0), (w,h), (0,h)] order.
static inline bool isRectInside(const Point2f a[4], const Point2f b[4])
{
for (int i = 0; i < 4; ++i)
if (b[i].x > a[0].x && b[i].x < a[2].x && b[i].y > a[0].y && b[i].y < a[2].y)
return false;
for (int i = 0; i < 4; ++i)
for (int j = 0; j < 4; ++j)
if (segmentsIntersect(a[i], a[(i+1)%4], b[j], b[(j+1)%4]))
return false;
return true;
}
static inline bool isGoodMotion(const float M[], float w, float h, float dx, float dy)
{
Point2f pt[4] = {Point2f(0,0), Point2f(w,0), Point2f(w,h), Point2f(0,h)};
Point2f Mpt[4];
float z;
for (int i = 0; i < 4; ++i)
{
Mpt[i].x = M[0]*pt[i].x + M[1]*pt[i].y + M[2];
Mpt[i].y = M[3]*pt[i].x + M[4]*pt[i].y + M[5];
z = M[6]*pt[i].x + M[7]*pt[i].y + M[8];
Mpt[i].x /= z;
Mpt[i].y /= z;
}
pt[0] = Point2f(dx, dy);
pt[1] = Point2f(w - dx, dy);
pt[2] = Point2f(w - dx, h - dy);
pt[3] = Point2f(dx, h - dy);
return isRectInside(pt, Mpt);
}
static inline void relaxMotion(const float M[], float t, float res[])
{
res[0] = M[0]*(1.f-t) + t;
res[1] = M[1]*(1.f-t);
res[2] = M[2]*(1.f-t);
res[3] = M[3]*(1.f-t);
res[4] = M[4]*(1.f-t) + t;
res[5] = M[5]*(1.f-t);
res[6] = M[6]*(1.f-t);
res[7] = M[7]*(1.f-t);
res[8] = M[8]*(1.f-t) + t;
}
Mat ensureInclusionConstraint(const Mat &M, Size size, float trimRatio)
{
CV_Assert(M.size() == Size(3,3) && M.type() == CV_32F);
const float w = static_cast<float>(size.width);
const float h = static_cast<float>(size.height);
const float dx = floor(w * trimRatio);
const float dy = floor(h * trimRatio);
const float srcM[] =
{M.at<float>(0,0), M.at<float>(0,1), M.at<float>(0,2),
M.at<float>(1,0), M.at<float>(1,1), M.at<float>(1,2),
M.at<float>(2,0), M.at<float>(2,1), M.at<float>(2,2)};
float curM[9];
float t = 0;
relaxMotion(srcM, t, curM);
if (isGoodMotion(curM, w, h, dx, dy))
return M;
float l = 0, r = 1;
while (r - l > 1e-3f)
{
t = (l + r) * 0.5f;
relaxMotion(srcM, t, curM);
if (isGoodMotion(curM, w, h, dx, dy))
r = t;
else
l = t;
}
return (1 - r) * M + r * Mat::eye(3, 3, CV_32F);
}
// TODO can be estimated for O(1) time
float estimateOptimalTrimRatio(const Mat &M, Size size)
{
CV_Assert(M.size() == Size(3,3) && M.type() == CV_32F);
const float w = static_cast<float>(size.width);
const float h = static_cast<float>(size.height);
Mat_<float> M_(M);
Point2f pt[4] = {Point2f(0,0), Point2f(w,0), Point2f(w,h), Point2f(0,h)};
Point2f Mpt[4];
float z;
for (int i = 0; i < 4; ++i)
{
Mpt[i].x = M_(0,0)*pt[i].x + M_(0,1)*pt[i].y + M_(0,2);
Mpt[i].y = M_(1,0)*pt[i].x + M_(1,1)*pt[i].y + M_(1,2);
z = M_(2,0)*pt[i].x + M_(2,1)*pt[i].y + M_(2,2);
Mpt[i].x /= z;
Mpt[i].y /= z;
}
float l = 0, r = 0.5f;
while (r - l > 1e-3f)
{
float t = (l + r) * 0.5f;
float dx = floor(w * t);
float dy = floor(h * t);
pt[0] = Point2f(dx, dy);
pt[1] = Point2f(w - dx, dy);
pt[2] = Point2f(w - dx, h - dy);
pt[3] = Point2f(dx, h - dy);
if (isRectInside(pt, Mpt))
r = t;
else
l = t;
}
return r;
}
} // namespace videostab
} // namespace cv