/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/videostab/motion_stabilizing.hpp" #include "opencv2/videostab/global_motion.hpp" #include "opencv2/videostab/ring_buffer.hpp" #include "clp.hpp" namespace cv { namespace videostab { void MotionStabilizationPipeline::stabilize( int size, const std::vector<Mat> &motions, std::pair<int,int> range, Mat *stabilizationMotions) { std::vector<Mat> updatedMotions(motions.size()); for (size_t i = 0; i < motions.size(); ++i) updatedMotions[i] = motions[i].clone(); std::vector<Mat> stabilizationMotions_(size); for (int i = 0; i < size; ++i) stabilizationMotions[i] = Mat::eye(3, 3, CV_32F); for (size_t i = 0; i < stabilizers_.size(); ++i) { stabilizers_[i]->stabilize(size, updatedMotions, range, &stabilizationMotions_[0]); for (int k = 0; k < size; ++k) stabilizationMotions[k] = stabilizationMotions_[k] * stabilizationMotions[k]; for (int j = 0; j + 1 < size; ++j) { Mat S0 = stabilizationMotions[j]; Mat S1 = stabilizationMotions[j+1]; at(j, updatedMotions) = S1 * at(j, updatedMotions) * S0.inv(); } } } void MotionFilterBase::stabilize( int size, const std::vector<Mat> &motions, std::pair<int,int> range, Mat *stabilizationMotions) { for (int i = 0; i < size; ++i) stabilizationMotions[i] = stabilize(i, motions, range); } void GaussianMotionFilter::setParams(int _radius, float _stdev) { radius_ = _radius; stdev_ = _stdev > 0.f ? _stdev : std::sqrt(static_cast<float>(_radius)); float sum = 0; weight_.resize(2*radius_ + 1); for (int i = -radius_; i <= radius_; ++i) sum += weight_[radius_ + i] = std::exp(-i*i/(stdev_*stdev_)); for (int i = -radius_; i <= radius_; ++i) weight_[radius_ + i] /= sum; } Mat GaussianMotionFilter::stabilize(int idx, const std::vector<Mat> &motions, std::pair<int,int> range) { const Mat &cur = at(idx, motions); Mat res = Mat::zeros(cur.size(), cur.type()); float sum = 0.f; int iMin = std::max(idx - radius_, range.first); int iMax = std::min(idx + radius_, range.second); for (int i = iMin; i <= iMax; ++i) { res += weight_[radius_ + i - idx] * getMotion(idx, i, motions); sum += weight_[radius_ + i - idx]; } return sum > 0.f ? res / sum : Mat::eye(cur.size(), cur.type()); } LpMotionStabilizer::LpMotionStabilizer(MotionModel model) { setMotionModel(model); setFrameSize(Size(0,0)); setTrimRatio(0.1f); setWeight1(1); setWeight2(10); setWeight3(100); setWeight4(100); } #ifndef HAVE_CLP void LpMotionStabilizer::stabilize(int, const std::vector<Mat>&, std::pair<int,int>, Mat*) { CV_Error(Error::StsError, "The library is built without Clp support"); } #else void LpMotionStabilizer::stabilize( int size, const std::vector<Mat> &motions, std::pair<int,int> /*range*/, Mat *stabilizationMotions) { CV_Assert(model_ <= MM_AFFINE); int N = size; const std::vector<Mat> &M = motions; Mat *S = stabilizationMotions; double w = frameSize_.width, h = frameSize_.height; double tw = w * trimRatio_, th = h * trimRatio_; int ncols = 4*N + 6*(N-1) + 6*(N-2) + 6*(N-3); int nrows = 8*N + 2*6*(N-1) + 2*6*(N-2) + 2*6*(N-3); rows_.clear(); cols_.clear(); elems_.clear(); obj_.assign(ncols, 0); collb_.assign(ncols, -INF); colub_.assign(ncols, INF); int c = 4*N; // for each slack variable e[t] (error bound) for (int t = 0; t < N-1; ++t, c += 6) { // e[t](0,0) obj_[c] = w4_*w1_; collb_[c] = 0; // e[t](0,1) obj_[c+1] = w4_*w1_; collb_[c+1] = 0; // e[t](0,2) obj_[c+2] = w1_; collb_[c+2] = 0; // e[t](1,0) obj_[c+3] = w4_*w1_; collb_[c+3] = 0; // e[t](1,1) obj_[c+4] = w4_*w1_; collb_[c+4] = 0; // e[t](1,2) obj_[c+5] = w1_; collb_[c+5] = 0; } for (int t = 0; t < N-2; ++t, c += 6) { // e[t](0,0) obj_[c] = w4_*w2_; collb_[c] = 0; // e[t](0,1) obj_[c+1] = w4_*w2_; collb_[c+1] = 0; // e[t](0,2) obj_[c+2] = w2_; collb_[c+2] = 0; // e[t](1,0) obj_[c+3] = w4_*w2_; collb_[c+3] = 0; // e[t](1,1) obj_[c+4] = w4_*w2_; collb_[c+4] = 0; // e[t](1,2) obj_[c+5] = w2_; collb_[c+5] = 0; } for (int t = 0; t < N-3; ++t, c += 6) { // e[t](0,0) obj_[c] = w4_*w3_; collb_[c] = 0; // e[t](0,1) obj_[c+1] = w4_*w3_; collb_[c+1] = 0; // e[t](0,2) obj_[c+2] = w3_; collb_[c+2] = 0; // e[t](1,0) obj_[c+3] = w4_*w3_; collb_[c+3] = 0; // e[t](1,1) obj_[c+4] = w4_*w3_; collb_[c+4] = 0; // e[t](1,2) obj_[c+5] = w3_; collb_[c+5] = 0; } elems_.clear(); rowlb_.assign(nrows, -INF); rowub_.assign(nrows, INF); int r = 0; // frame corners const Point2d pt[] = {Point2d(0,0), Point2d(w,0), Point2d(w,h), Point2d(0,h)}; // for each frame for (int t = 0; t < N; ++t) { c = 4*t; // for each frame corner for (int i = 0; i < 4; ++i, r += 2) { set(r, c, pt[i].x); set(r, c+1, pt[i].y); set(r, c+2, 1); set(r+1, c, pt[i].y); set(r+1, c+1, -pt[i].x); set(r+1, c+3, 1); rowlb_[r] = pt[i].x-tw; rowub_[r] = pt[i].x+tw; rowlb_[r+1] = pt[i].y-th; rowub_[r+1] = pt[i].y+th; } } // for each S[t+1]M[t] - S[t] - e[t] <= 0 condition for (int t = 0; t < N-1; ++t, r += 6) { Mat_<float> M0 = at(t,M); c = 4*t; set(r, c, -1); set(r+1, c+1, -1); set(r+2, c+2, -1); set(r+3, c+1, 1); set(r+4, c, -1); set(r+5, c+3, -1); c = 4*(t+1); set(r, c, M0(0,0)); set(r, c+1, M0(1,0)); set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)); set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1); set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)); set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1)); set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1); c = 4*N + 6*t; for (int i = 0; i < 6; ++i) set(r+i, c+i, -1); rowub_[r] = 0; rowub_[r+1] = 0; rowub_[r+2] = 0; rowub_[r+3] = 0; rowub_[r+4] = 0; rowub_[r+5] = 0; } // for each 0 <= S[t+1]M[t] - S[t] + e[t] condition for (int t = 0; t < N-1; ++t, r += 6) { Mat_<float> M0 = at(t,M); c = 4*t; set(r, c, -1); set(r+1, c+1, -1); set(r+2, c+2, -1); set(r+3, c+1, 1); set(r+4, c, -1); set(r+5, c+3, -1); c = 4*(t+1); set(r, c, M0(0,0)); set(r, c+1, M0(1,0)); set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)); set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1); set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)); set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1)); set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1); c = 4*N + 6*t; for (int i = 0; i < 6; ++i) set(r+i, c+i, 1); rowlb_[r] = 0; rowlb_[r+1] = 0; rowlb_[r+2] = 0; rowlb_[r+3] = 0; rowlb_[r+4] = 0; rowlb_[r+5] = 0; } // for each S[t+2]M[t+1] - S[t+1]*(I+M[t]) + S[t] - e[t] <= 0 condition for (int t = 0; t < N-2; ++t, r += 6) { Mat_<float> M0 = at(t,M), M1 = at(t+1,M); c = 4*t; set(r, c, 1); set(r+1, c+1, 1); set(r+2, c+2, 1); set(r+3, c+1, -1); set(r+4, c, 1); set(r+5, c+3, 1); c = 4*(t+1); set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0)); set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1); set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2); set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1); set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1)); set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2); c = 4*(t+2); set(r, c, M1(0,0)); set(r, c+1, M1(1,0)); set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1)); set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1); set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0)); set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1)); set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1); c = 4*N + 6*(N-1) + 6*t; for (int i = 0; i < 6; ++i) set(r+i, c+i, -1); rowub_[r] = 0; rowub_[r+1] = 0; rowub_[r+2] = 0; rowub_[r+3] = 0; rowub_[r+4] = 0; rowub_[r+5] = 0; } // for each 0 <= S[t+2]M[t+1]] - S[t+1]*(I+M[t]) + S[t] + e[t] condition for (int t = 0; t < N-2; ++t, r += 6) { Mat_<float> M0 = at(t,M), M1 = at(t+1,M); c = 4*t; set(r, c, 1); set(r+1, c+1, 1); set(r+2, c+2, 1); set(r+3, c+1, -1); set(r+4, c, 1); set(r+5, c+3, 1); c = 4*(t+1); set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0)); set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1); set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2); set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1); set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1)); set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2); c = 4*(t+2); set(r, c, M1(0,0)); set(r, c+1, M1(1,0)); set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1)); set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1); set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0)); set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1)); set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1); c = 4*N + 6*(N-1) + 6*t; for (int i = 0; i < 6; ++i) set(r+i, c+i, 1); rowlb_[r] = 0; rowlb_[r+1] = 0; rowlb_[r+2] = 0; rowlb_[r+3] = 0; rowlb_[r+4] = 0; rowlb_[r+5] = 0; } // for each S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) - S[t] - e[t] <= 0 condition for (int t = 0; t < N-3; ++t, r += 6) { Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M); c = 4*t; set(r, c, -1); set(r+1, c+1, -1); set(r+2, c+2, -1); set(r+3, c+1, 1); set(r+4, c, -1); set(r+5, c+3, -1); c = 4*(t+1); set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0)); set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2); set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3); set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2); set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1)); set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3); c = 4*(t+2); set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0)); set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1); set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3); set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1); set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1)); set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3); c = 4*(t+3); set(r, c, M2(0,0)); set(r, c+1, M2(1,0)); set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1)); set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1); set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0)); set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1)); set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1); c = 4*N + 6*(N-1) + 6*(N-2) + 6*t; for (int i = 0; i < 6; ++i) set(r+i, c+i, -1); rowub_[r] = 0; rowub_[r+1] = 0; rowub_[r+2] = 0; rowub_[r+3] = 0; rowub_[r+4] = 0; rowub_[r+5] = 0; } // for each 0 <= S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) + e[t] condition for (int t = 0; t < N-3; ++t, r += 6) { Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M); c = 4*t; set(r, c, -1); set(r+1, c+1, -1); set(r+2, c+2, -1); set(r+3, c+1, 1); set(r+4, c, -1); set(r+5, c+3, -1); c = 4*(t+1); set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0)); set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2); set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3); set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2); set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1)); set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3); c = 4*(t+2); set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0)); set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1); set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3); set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1); set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1)); set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3); c = 4*(t+3); set(r, c, M2(0,0)); set(r, c+1, M2(1,0)); set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1)); set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1); set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0)); set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1)); set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1); c = 4*N + 6*(N-1) + 6*(N-2) + 6*t; for (int i = 0; i < 6; ++i) set(r+i, c+i, 1); rowlb_[r] = 0; rowlb_[r+1] = 0; rowlb_[r+2] = 0; rowlb_[r+3] = 0; rowlb_[r+4] = 0; rowlb_[r+5] = 0; } // solve CoinPackedMatrix A(true, &rows_[0], &cols_[0], &elems_[0], elems_.size()); A.setDimensions(nrows, ncols); ClpSimplex model(false); model.loadProblem(A, &collb_[0], &colub_[0], &obj_[0], &rowlb_[0], &rowub_[0]); ClpDualRowSteepest dualSteep(1); model.setDualRowPivotAlgorithm(dualSteep); ClpPrimalColumnSteepest primalSteep(1); model.setPrimalColumnPivotAlgorithm(primalSteep); model.scaling(1); ClpPresolve presolveInfo; Ptr<ClpSimplex> presolvedModel(presolveInfo.presolvedModel(model)); if (presolvedModel) { presolvedModel->dual(); presolveInfo.postsolve(true); model.checkSolution(); model.primal(1); } else { model.dual(); model.checkSolution(); model.primal(1); } // save results const double *sol = model.getColSolution(); c = 0; for (int t = 0; t < N; ++t, c += 4) { Mat_<float> S0 = Mat::eye(3, 3, CV_32F); S0(1,1) = S0(0,0) = sol[c]; S0(0,1) = sol[c+1]; S0(1,0) = -sol[c+1]; S0(0,2) = sol[c+2]; S0(1,2) = sol[c+3]; S[t] = S0; } } #endif // #ifndef HAVE_CLP static inline int areaSign(Point2f a, Point2f b, Point2f c) { double area = (b-a).cross(c-a); if (area < -1e-5) return -1; if (area > 1e-5) return 1; return 0; } static inline bool segmentsIntersect(Point2f a, Point2f b, Point2f c, Point2f d) { return areaSign(a,b,c) * areaSign(a,b,d) < 0 && areaSign(c,d,a) * areaSign(c,d,b) < 0; } // Checks if rect a (with sides parallel to axis) is inside rect b (arbitrary). // Rects must be passed in the [(0,0), (w,0), (w,h), (0,h)] order. static inline bool isRectInside(const Point2f a[4], const Point2f b[4]) { for (int i = 0; i < 4; ++i) if (b[i].x > a[0].x && b[i].x < a[2].x && b[i].y > a[0].y && b[i].y < a[2].y) return false; for (int i = 0; i < 4; ++i) for (int j = 0; j < 4; ++j) if (segmentsIntersect(a[i], a[(i+1)%4], b[j], b[(j+1)%4])) return false; return true; } static inline bool isGoodMotion(const float M[], float w, float h, float dx, float dy) { Point2f pt[4] = {Point2f(0,0), Point2f(w,0), Point2f(w,h), Point2f(0,h)}; Point2f Mpt[4]; float z; for (int i = 0; i < 4; ++i) { Mpt[i].x = M[0]*pt[i].x + M[1]*pt[i].y + M[2]; Mpt[i].y = M[3]*pt[i].x + M[4]*pt[i].y + M[5]; z = M[6]*pt[i].x + M[7]*pt[i].y + M[8]; Mpt[i].x /= z; Mpt[i].y /= z; } pt[0] = Point2f(dx, dy); pt[1] = Point2f(w - dx, dy); pt[2] = Point2f(w - dx, h - dy); pt[3] = Point2f(dx, h - dy); return isRectInside(pt, Mpt); } static inline void relaxMotion(const float M[], float t, float res[]) { res[0] = M[0]*(1.f-t) + t; res[1] = M[1]*(1.f-t); res[2] = M[2]*(1.f-t); res[3] = M[3]*(1.f-t); res[4] = M[4]*(1.f-t) + t; res[5] = M[5]*(1.f-t); res[6] = M[6]*(1.f-t); res[7] = M[7]*(1.f-t); res[8] = M[8]*(1.f-t) + t; } Mat ensureInclusionConstraint(const Mat &M, Size size, float trimRatio) { CV_Assert(M.size() == Size(3,3) && M.type() == CV_32F); const float w = static_cast<float>(size.width); const float h = static_cast<float>(size.height); const float dx = floor(w * trimRatio); const float dy = floor(h * trimRatio); const float srcM[] = {M.at<float>(0,0), M.at<float>(0,1), M.at<float>(0,2), M.at<float>(1,0), M.at<float>(1,1), M.at<float>(1,2), M.at<float>(2,0), M.at<float>(2,1), M.at<float>(2,2)}; float curM[9]; float t = 0; relaxMotion(srcM, t, curM); if (isGoodMotion(curM, w, h, dx, dy)) return M; float l = 0, r = 1; while (r - l > 1e-3f) { t = (l + r) * 0.5f; relaxMotion(srcM, t, curM); if (isGoodMotion(curM, w, h, dx, dy)) r = t; else l = t; } return (1 - r) * M + r * Mat::eye(3, 3, CV_32F); } // TODO can be estimated for O(1) time float estimateOptimalTrimRatio(const Mat &M, Size size) { CV_Assert(M.size() == Size(3,3) && M.type() == CV_32F); const float w = static_cast<float>(size.width); const float h = static_cast<float>(size.height); Mat_<float> M_(M); Point2f pt[4] = {Point2f(0,0), Point2f(w,0), Point2f(w,h), Point2f(0,h)}; Point2f Mpt[4]; float z; for (int i = 0; i < 4; ++i) { Mpt[i].x = M_(0,0)*pt[i].x + M_(0,1)*pt[i].y + M_(0,2); Mpt[i].y = M_(1,0)*pt[i].x + M_(1,1)*pt[i].y + M_(1,2); z = M_(2,0)*pt[i].x + M_(2,1)*pt[i].y + M_(2,2); Mpt[i].x /= z; Mpt[i].y /= z; } float l = 0, r = 0.5f; while (r - l > 1e-3f) { float t = (l + r) * 0.5f; float dx = floor(w * t); float dy = floor(h * t); pt[0] = Point2f(dx, dy); pt[1] = Point2f(w - dx, dy); pt[2] = Point2f(w - dx, h - dy); pt[3] = Point2f(dx, h - dy); if (isRectInside(pt, Mpt)) r = t; else l = t; } return r; } } // namespace videostab } // namespace cv