// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "vixl/a64/macro-assembler-a64.h"
#include "vixl/a64/debugger-a64.h"
#include "vixl/a64/simulator-a64.h"
#include "examples.h"
#include "non-const-visitor.h"
#include "custom-disassembler.h"
#include "../test-utils-a64.h"
#include "../test-runner.h"
#define TEST(name) TEST_(EXAMPLE_##name)
using namespace vixl;
TEST(custom_disassembler) {
TestCustomDisassembler();
}
// The tests below only work with the simulator.
#ifdef VIXL_INCLUDE_SIMULATOR
#define ARRAY_SIZE(Array) (sizeof(Array) / sizeof((Array)[0]))
#define BUF_SIZE (4096)
#define __ masm->
uint64_t FactorialC(uint64_t n) {
uint64_t result = 1;
while (n != 0) {
result *= n;
n--;
}
return result;
}
// Multiply two column-major 4x4 matrices of 32 bit floating point values.
// Return a column-major 4x4 matrix of 32 bit floating point values in 'C'.
void MatrixMultiplyC(float C[16], float A[16], float B[16]) {
C[ 0] = A[ 0]*B[ 0] + A[ 4]*B[ 1] + A[ 8]*B[ 2] + A[12]*B[ 3];
C[ 1] = A[ 1]*B[ 0] + A[ 5]*B[ 1] + A[ 9]*B[ 2] + A[13]*B[ 3];
C[ 2] = A[ 2]*B[ 0] + A[ 6]*B[ 1] + A[10]*B[ 2] + A[14]*B[ 3];
C[ 3] = A[ 3]*B[ 0] + A[ 7]*B[ 1] + A[11]*B[ 2] + A[15]*B[ 3];
C[ 4] = A[ 0]*B[ 4] + A[ 4]*B[ 5] + A[ 8]*B[ 6] + A[12]*B[ 7];
C[ 5] = A[ 1]*B[ 4] + A[ 5]*B[ 5] + A[ 9]*B[ 6] + A[13]*B[ 7];
C[ 6] = A[ 2]*B[ 4] + A[ 6]*B[ 5] + A[10]*B[ 6] + A[14]*B[ 7];
C[ 7] = A[ 3]*B[ 4] + A[ 7]*B[ 5] + A[11]*B[ 6] + A[15]*B[ 7];
C[ 8] = A[ 0]*B[ 8] + A[ 4]*B[ 9] + A[ 8]*B[10] + A[12]*B[11];
C[ 9] = A[ 1]*B[ 8] + A[ 5]*B[ 9] + A[ 9]*B[10] + A[13]*B[11];
C[10] = A[ 2]*B[ 8] + A[ 6]*B[ 9] + A[10]*B[10] + A[14]*B[11];
C[11] = A[ 3]*B[ 8] + A[ 7]*B[ 9] + A[11]*B[10] + A[15]*B[11];
C[12] = A[ 0]*B[12] + A[ 4]*B[13] + A[ 8]*B[14] + A[12]*B[15];
C[13] = A[ 1]*B[12] + A[ 5]*B[13] + A[ 9]*B[14] + A[13]*B[15];
C[14] = A[ 2]*B[12] + A[ 6]*B[13] + A[10]*B[14] + A[14]*B[15];
C[15] = A[ 3]*B[12] + A[ 7]*B[13] + A[11]*B[14] + A[15]*B[15];
}
double Add3DoubleC(double x, double y, double z) {
return x + y + z;
}
double Add4DoubleC(uint64_t a, double b, uint64_t c, double d) {
return static_cast<double>(a) + b + static_cast<double>(c) + d;
}
uint32_t SumArrayC(uint8_t* array, uint32_t size) {
uint32_t result = 0;
for (uint32_t i = 0; i < size; ++i) {
result += array[i];
}
return result;
}
void GenerateTestWrapper(MacroAssembler* masm, RegisterDump *regs) {
__ Push(xzr, lr);
__ Blr(x15);
regs->Dump(masm);
__ Pop(lr, xzr);
__ Ret();
}
#define TEST_FUNCTION(Func) \
do { \
int64_t saved_xregs[13]; \
saved_xregs[0] = simulator.xreg(19); \
saved_xregs[1] = simulator.xreg(20); \
saved_xregs[2] = simulator.xreg(21); \
saved_xregs[3] = simulator.xreg(22); \
saved_xregs[4] = simulator.xreg(23); \
saved_xregs[5] = simulator.xreg(24); \
saved_xregs[6] = simulator.xreg(25); \
saved_xregs[7] = simulator.xreg(26); \
saved_xregs[8] = simulator.xreg(27); \
saved_xregs[9] = simulator.xreg(28); \
saved_xregs[10] = simulator.xreg(29); \
saved_xregs[11] = simulator.xreg(30); \
saved_xregs[12] = simulator.xreg(31); \
\
uint64_t saved_dregs[8]; \
saved_dregs[0] = simulator.dreg_bits(8); \
saved_dregs[1] = simulator.dreg_bits(9); \
saved_dregs[2] = simulator.dreg_bits(10); \
saved_dregs[3] = simulator.dreg_bits(11); \
saved_dregs[4] = simulator.dreg_bits(12); \
saved_dregs[5] = simulator.dreg_bits(13); \
saved_dregs[6] = simulator.dreg_bits(14); \
saved_dregs[7] = simulator.dreg_bits(15); \
\
simulator.set_xreg(15, masm.GetLabelAddress<uint64_t>(&Func)); \
simulator.RunFrom(masm.GetLabelAddress<Instruction*>(&test)); \
\
assert(saved_xregs[0] == simulator.xreg(19)); \
assert(saved_xregs[1] == simulator.xreg(20)); \
assert(saved_xregs[2] == simulator.xreg(21)); \
assert(saved_xregs[3] == simulator.xreg(22)); \
assert(saved_xregs[4] == simulator.xreg(23)); \
assert(saved_xregs[5] == simulator.xreg(24)); \
assert(saved_xregs[6] == simulator.xreg(25)); \
assert(saved_xregs[7] == simulator.xreg(26)); \
assert(saved_xregs[8] == simulator.xreg(27)); \
assert(saved_xregs[9] == simulator.xreg(28)); \
assert(saved_xregs[10] == simulator.xreg(29)); \
assert(saved_xregs[11] == simulator.xreg(30)); \
assert(saved_xregs[12] == simulator.xreg(31)); \
\
assert(saved_dregs[0] == simulator.dreg_bits(8)); \
assert(saved_dregs[1] == simulator.dreg_bits(9)); \
assert(saved_dregs[2] == simulator.dreg_bits(10)); \
assert(saved_dregs[3] == simulator.dreg_bits(11)); \
assert(saved_dregs[4] == simulator.dreg_bits(12)); \
assert(saved_dregs[5] == simulator.dreg_bits(13)); \
assert(saved_dregs[6] == simulator.dreg_bits(14)); \
assert(saved_dregs[7] == simulator.dreg_bits(15)); \
\
} while (0)
#define START() \
MacroAssembler masm(BUF_SIZE); \
Decoder decoder; \
Debugger simulator(&decoder); \
simulator.set_coloured_trace(Test::coloured_trace()); \
PrintDisassembler* pdis = NULL; \
Instrument* inst = NULL; \
if (Test::trace_sim()) { \
pdis = new PrintDisassembler(stdout); \
decoder.PrependVisitor(pdis); \
} \
if (Test::instruction_stats()) { \
inst = new Instrument("vixl_stats.csv", 10); \
inst->Enable(); \
decoder.AppendVisitor(inst); \
} \
RegisterDump regs; \
\
Label test; \
masm.Bind(&test); \
GenerateTestWrapper(&masm, ®s); \
masm.FinalizeCode()
#define FACTORIAL_DOTEST(N) \
do { \
simulator.ResetState(); \
simulator.set_xreg(0, N); \
TEST_FUNCTION(factorial); \
assert(static_cast<uint64_t>(regs.xreg(0)) == FactorialC(N)); \
} while (0)
TEST(factorial) {
START();
Label factorial;
masm.Bind(&factorial);
GenerateFactorial(&masm);
masm.FinalizeCode();
FACTORIAL_DOTEST(0);
FACTORIAL_DOTEST(1);
FACTORIAL_DOTEST(5);
FACTORIAL_DOTEST(10);
FACTORIAL_DOTEST(20);
FACTORIAL_DOTEST(25);
}
#define FACTORIAL_REC_DOTEST(N) \
do { \
simulator.ResetState(); \
simulator.set_xreg(0, N); \
TEST_FUNCTION(factorial_rec); \
assert(static_cast<uint64_t>(regs.xreg(0)) == FactorialC(N)); \
} while (0)
TEST(factorial_rec) {
START();
Label factorial_rec;
masm.Bind(&factorial_rec);
GenerateFactorialRec(&masm);
masm.FinalizeCode();
FACTORIAL_REC_DOTEST(0);
FACTORIAL_REC_DOTEST(1);
FACTORIAL_REC_DOTEST(5);
FACTORIAL_REC_DOTEST(10);
FACTORIAL_REC_DOTEST(20);
FACTORIAL_REC_DOTEST(25);
}
TEST(neon_matrix_multiply) {
START();
Label neon_matrix_multiply;
masm.Bind(&neon_matrix_multiply);
GenerateNEONMatrixMultiply(&masm);
masm.FinalizeCode();
{
const int kRowSize = 4;
const int kColSize = 4;
const int kLength = kRowSize * kColSize;
float mat1[kLength], mat2[kLength], expected[kLength], output[kLength];
// Fill the two input matrices with some 32 bit floating point values.
mat1[0] = 1.0f; mat1[4] = 2.0f; mat1[ 8] = 3.0f; mat1[12] = 4.0f;
mat1[1] = 52.03f; mat1[5] = 12.24f; mat1[ 9] = 53.56f; mat1[13] = 22.22f;
mat1[2] = 4.43f; mat1[6] = 5.00f; mat1[10] = 7.00f; mat1[14] = 3.11f;
mat1[3] = 43.47f; mat1[7] = 10.97f; mat1[11] = 37.78f; mat1[15] = 90.91f;
mat2[0] = 1.0f; mat2[4] = 11.24f; mat2[ 8] = 21.00f; mat2[12] = 21.31f;
mat2[1] = 2.0f; mat2[5] = 2.24f; mat2[ 9] = 8.56f; mat2[13] = 52.03f;
mat2[2] = 3.0f; mat2[6] = 51.00f; mat2[10] = 21.00f; mat2[14] = 33.11f;
mat2[3] = 4.0f; mat2[7] = 0.00f; mat2[11] = 84.00f; mat2[15] = 1.97f;
MatrixMultiplyC(expected, mat1, mat2);
simulator.ResetState();
simulator.set_xreg(0, reinterpret_cast<uintptr_t>(output));
simulator.set_xreg(1, reinterpret_cast<uintptr_t>(mat1));
simulator.set_xreg(2, reinterpret_cast<uintptr_t>(mat2));
TEST_FUNCTION(neon_matrix_multiply);
// Check that the results match what is expected.
for (int i = 0; i < kLength; i++) {
assert(output[i] == expected[i]);
}
}
}
TEST(add2_vectors) {
START();
// Create and initialize the assembler and the simulator.
Label add2_vectors;
masm.Bind(&add2_vectors);
GenerateAdd2Vectors(&masm);
masm.FinalizeCode();
// Initialize input data for the example function.
uint8_t A[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 200};
uint8_t B[] = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, \
30, 31, 50};
uint8_t D[ARRAY_SIZE(A)];
uintptr_t A_addr = reinterpret_cast<uintptr_t>(A);
uintptr_t B_addr = reinterpret_cast<uintptr_t>(B);
// Check whether number of elements in vectors match.
VIXL_STATIC_ASSERT(ARRAY_SIZE(A) == ARRAY_SIZE(B));
VIXL_STATIC_ASSERT(ARRAY_SIZE(A) == ARRAY_SIZE(D));
// Compute vector sum for comparison later.
for (unsigned i = 0; i < ARRAY_SIZE(A); i++) {
D[i] = A[i] + B[i];
}
// Set up simulator and run example function.
simulator.ResetState();
simulator.set_xreg(0, A_addr);
simulator.set_xreg(1, B_addr);
simulator.set_xreg(2, ARRAY_SIZE(A));
TEST_FUNCTION(add2_vectors);
// Compare vectors to ensure sums are equal.
for (unsigned i = 0; i < ARRAY_SIZE(A); i++) {
assert(A[i] == D[i]);
}
}
#define ADD3_DOUBLE_DOTEST(A, B, C) \
do { \
simulator.ResetState(); \
simulator.set_dreg(0, A); \
simulator.set_dreg(1, B); \
simulator.set_dreg(2, C); \
TEST_FUNCTION(add3_double); \
assert(regs.dreg(0) == Add3DoubleC(A, B, C)); \
} while (0)
TEST(add3_double) {
START();
Label add3_double;
masm.Bind(&add3_double);
GenerateAdd3Double(&masm);
masm.FinalizeCode();
ADD3_DOUBLE_DOTEST(0.0, 0.0, 0.0);
ADD3_DOUBLE_DOTEST(457.698, 14.36, 2.00025);
ADD3_DOUBLE_DOTEST(-45.55, -98.9, -0.354);
ADD3_DOUBLE_DOTEST(.55, .9, .12);
}
#define ADD4_DOUBLE_DOTEST(A, B, C, D) \
do { \
simulator.ResetState(); \
simulator.set_xreg(0, A); \
simulator.set_dreg(0, B); \
simulator.set_xreg(1, C); \
simulator.set_dreg(1, D); \
TEST_FUNCTION(add4_double); \
assert(regs.dreg(0) == Add4DoubleC(A, B, C, D)); \
} while (0)
TEST(add4_double) {
START();
Label add4_double;
masm.Bind(&add4_double);
GenerateAdd4Double(&masm);
masm.FinalizeCode();
ADD4_DOUBLE_DOTEST(0, 0, 0, 0);
ADD4_DOUBLE_DOTEST(4, 3.287, 6, 13.48);
ADD4_DOUBLE_DOTEST(56, 665.368, 0, -4932.4697);
ADD4_DOUBLE_DOTEST(56, 0, 546, 0);
ADD4_DOUBLE_DOTEST(0, 0.658, 0, 0.00000011540026);
}
#define SUM_ARRAY_DOTEST(Array) \
do { \
simulator.ResetState(); \
uintptr_t addr = reinterpret_cast<uintptr_t>(Array); \
simulator.set_xreg(0, addr); \
simulator.set_xreg(1, ARRAY_SIZE(Array)); \
TEST_FUNCTION(sum_array); \
assert(regs.xreg(0) == SumArrayC(Array, ARRAY_SIZE(Array))); \
} while (0)
TEST(sum_array) {
START();
Label sum_array;
masm.Bind(&sum_array);
GenerateSumArray(&masm);
masm.FinalizeCode();
uint8_t data1[] = { 4, 9, 13, 3, 2, 6, 5 };
SUM_ARRAY_DOTEST(data1);
uint8_t data2[] = { 42 };
SUM_ARRAY_DOTEST(data2);
uint8_t data3[1000];
for (unsigned int i = 0; i < ARRAY_SIZE(data3); ++i)
data3[i] = 255;
SUM_ARRAY_DOTEST(data3);
}
#define ABS_DOTEST(X) \
do { \
simulator.ResetState(); \
simulator.set_xreg(0, X); \
TEST_FUNCTION(func_abs); \
assert(regs.xreg(0) == abs(X)); \
} while (0)
TEST(abs) {
START();
Label func_abs;
masm.Bind(&func_abs);
GenerateAbs(&masm);
masm.FinalizeCode();
ABS_DOTEST(-42);
ABS_DOTEST(0);
ABS_DOTEST(545);
ABS_DOTEST(-428751489);
}
TEST(crc32) {
START();
Label crc32;
masm.Bind(&crc32);
GenerateCrc32(&masm);
masm.FinalizeCode();
const char *msg = "Hello World!";
uintptr_t msg_addr = reinterpret_cast<uintptr_t>(msg);
size_t msg_size = strlen(msg);
int64_t chksum = INT64_C(0xe3d6e35c);
simulator.set_xreg(0, msg_addr);
simulator.set_xreg(1, msg_size);
TEST_FUNCTION(crc32);
assert(regs.xreg(0) == chksum);
}
TEST(swap4) {
START();
Label swap4;
masm.Bind(&swap4);
GenerateSwap4(&masm);
masm.FinalizeCode();
int64_t a = 15;
int64_t b = 26;
int64_t c = 46;
int64_t d = 79;
simulator.set_xreg(0, a);
simulator.set_xreg(1, b);
simulator.set_xreg(2, c);
simulator.set_xreg(3, d);
TEST_FUNCTION(swap4);
assert(regs.xreg(0) == d);
assert(regs.xreg(1) == c);
assert(regs.xreg(2) == b);
assert(regs.xreg(3) == a);
}
TEST(swap_int32) {
START();
Label swap_int32;
masm.Bind(&swap_int32);
GenerateSwapInt32(&masm);
masm.FinalizeCode();
int32_t x = 168;
int32_t y = 246;
simulator.set_wreg(0, x);
simulator.set_wreg(1, y);
TEST_FUNCTION(swap_int32);
assert(regs.wreg(0) == y);
assert(regs.wreg(1) == x);
}
#define CHECKBOUNDS_DOTEST(Value, Low, High) \
do { \
simulator.ResetState(); \
simulator.set_xreg(0, Value); \
simulator.set_xreg(1, Low); \
simulator.set_xreg(2, High); \
TEST_FUNCTION(check_bounds); \
assert(regs.xreg(0) == ((Low <= Value) && (Value <= High))); \
} while (0)
TEST(check_bounds) {
START();
Label check_bounds;
masm.Bind(&check_bounds);
GenerateCheckBounds(&masm);
masm.FinalizeCode();
CHECKBOUNDS_DOTEST(0, 100, 200);
CHECKBOUNDS_DOTEST(58, 100, 200);
CHECKBOUNDS_DOTEST(99, 100, 200);
CHECKBOUNDS_DOTEST(100, 100, 200);
CHECKBOUNDS_DOTEST(101, 100, 200);
CHECKBOUNDS_DOTEST(150, 100, 200);
CHECKBOUNDS_DOTEST(199, 100, 200);
CHECKBOUNDS_DOTEST(200, 100, 200);
CHECKBOUNDS_DOTEST(201, 100, 200);
}
#define GETTING_STARTED_DOTEST(Value) \
do { \
simulator.ResetState(); \
simulator.set_xreg(0, Value); \
TEST_FUNCTION(demo_function); \
assert(regs.xreg(0) == (Value & 0x1122334455667788)); \
} while (0)
TEST(getting_started) {
START();
Label demo_function;
masm.Bind(&demo_function);
GenerateDemoFunction(&masm);
masm.FinalizeCode();
GETTING_STARTED_DOTEST(0x8899aabbccddeeff);
GETTING_STARTED_DOTEST(0x1122334455667788);
GETTING_STARTED_DOTEST(0x0000000000000000);
GETTING_STARTED_DOTEST(0xffffffffffffffff);
GETTING_STARTED_DOTEST(0x5a5a5a5a5a5a5a5a);
}
TEST(non_const_visitor) {
byte assm_buf[BUF_SIZE];
MacroAssembler masm(assm_buf, BUF_SIZE);
Label code_start, code_end;
masm.Bind(&code_start);
GenerateNonConstVisitorTestCode(&masm);
masm.Bind(&code_end);
masm.FinalizeCode();
Instruction* instr_start = masm.GetLabelAddress<Instruction*>(&code_start);
Instruction* instr_end = masm.GetLabelAddress<Instruction*>(&code_end);
int64_t res_orig = RunNonConstVisitorTestGeneratedCode(instr_start);
ModifyNonConstVisitorTestGeneratedCode(instr_start, instr_end);
int64_t res_mod = RunNonConstVisitorTestGeneratedCode(instr_start);
assert(res_orig == -res_mod);
}
TEST(literal_example) {
VIXL_ASSERT(LiteralExample(1, 2) == 3);
VIXL_ASSERT(
LiteralExample(INT64_C(0x100000000), 0x1) == INT64_C(0x100000001));
}
#endif // VIXL_INCLUDE_SIMULATOR