// Copyright 2015, ARM Limited // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "vixl/a64/macro-assembler-a64.h" #include "vixl/a64/debugger-a64.h" #include "vixl/a64/simulator-a64.h" #include "examples.h" #include "non-const-visitor.h" #include "custom-disassembler.h" #include "../test-utils-a64.h" #include "../test-runner.h" #define TEST(name) TEST_(EXAMPLE_##name) using namespace vixl; TEST(custom_disassembler) { TestCustomDisassembler(); } // The tests below only work with the simulator. #ifdef VIXL_INCLUDE_SIMULATOR #define ARRAY_SIZE(Array) (sizeof(Array) / sizeof((Array)[0])) #define BUF_SIZE (4096) #define __ masm-> uint64_t FactorialC(uint64_t n) { uint64_t result = 1; while (n != 0) { result *= n; n--; } return result; } // Multiply two column-major 4x4 matrices of 32 bit floating point values. // Return a column-major 4x4 matrix of 32 bit floating point values in 'C'. void MatrixMultiplyC(float C[16], float A[16], float B[16]) { C[ 0] = A[ 0]*B[ 0] + A[ 4]*B[ 1] + A[ 8]*B[ 2] + A[12]*B[ 3]; C[ 1] = A[ 1]*B[ 0] + A[ 5]*B[ 1] + A[ 9]*B[ 2] + A[13]*B[ 3]; C[ 2] = A[ 2]*B[ 0] + A[ 6]*B[ 1] + A[10]*B[ 2] + A[14]*B[ 3]; C[ 3] = A[ 3]*B[ 0] + A[ 7]*B[ 1] + A[11]*B[ 2] + A[15]*B[ 3]; C[ 4] = A[ 0]*B[ 4] + A[ 4]*B[ 5] + A[ 8]*B[ 6] + A[12]*B[ 7]; C[ 5] = A[ 1]*B[ 4] + A[ 5]*B[ 5] + A[ 9]*B[ 6] + A[13]*B[ 7]; C[ 6] = A[ 2]*B[ 4] + A[ 6]*B[ 5] + A[10]*B[ 6] + A[14]*B[ 7]; C[ 7] = A[ 3]*B[ 4] + A[ 7]*B[ 5] + A[11]*B[ 6] + A[15]*B[ 7]; C[ 8] = A[ 0]*B[ 8] + A[ 4]*B[ 9] + A[ 8]*B[10] + A[12]*B[11]; C[ 9] = A[ 1]*B[ 8] + A[ 5]*B[ 9] + A[ 9]*B[10] + A[13]*B[11]; C[10] = A[ 2]*B[ 8] + A[ 6]*B[ 9] + A[10]*B[10] + A[14]*B[11]; C[11] = A[ 3]*B[ 8] + A[ 7]*B[ 9] + A[11]*B[10] + A[15]*B[11]; C[12] = A[ 0]*B[12] + A[ 4]*B[13] + A[ 8]*B[14] + A[12]*B[15]; C[13] = A[ 1]*B[12] + A[ 5]*B[13] + A[ 9]*B[14] + A[13]*B[15]; C[14] = A[ 2]*B[12] + A[ 6]*B[13] + A[10]*B[14] + A[14]*B[15]; C[15] = A[ 3]*B[12] + A[ 7]*B[13] + A[11]*B[14] + A[15]*B[15]; } double Add3DoubleC(double x, double y, double z) { return x + y + z; } double Add4DoubleC(uint64_t a, double b, uint64_t c, double d) { return static_cast<double>(a) + b + static_cast<double>(c) + d; } uint32_t SumArrayC(uint8_t* array, uint32_t size) { uint32_t result = 0; for (uint32_t i = 0; i < size; ++i) { result += array[i]; } return result; } void GenerateTestWrapper(MacroAssembler* masm, RegisterDump *regs) { __ Push(xzr, lr); __ Blr(x15); regs->Dump(masm); __ Pop(lr, xzr); __ Ret(); } #define TEST_FUNCTION(Func) \ do { \ int64_t saved_xregs[13]; \ saved_xregs[0] = simulator.xreg(19); \ saved_xregs[1] = simulator.xreg(20); \ saved_xregs[2] = simulator.xreg(21); \ saved_xregs[3] = simulator.xreg(22); \ saved_xregs[4] = simulator.xreg(23); \ saved_xregs[5] = simulator.xreg(24); \ saved_xregs[6] = simulator.xreg(25); \ saved_xregs[7] = simulator.xreg(26); \ saved_xregs[8] = simulator.xreg(27); \ saved_xregs[9] = simulator.xreg(28); \ saved_xregs[10] = simulator.xreg(29); \ saved_xregs[11] = simulator.xreg(30); \ saved_xregs[12] = simulator.xreg(31); \ \ uint64_t saved_dregs[8]; \ saved_dregs[0] = simulator.dreg_bits(8); \ saved_dregs[1] = simulator.dreg_bits(9); \ saved_dregs[2] = simulator.dreg_bits(10); \ saved_dregs[3] = simulator.dreg_bits(11); \ saved_dregs[4] = simulator.dreg_bits(12); \ saved_dregs[5] = simulator.dreg_bits(13); \ saved_dregs[6] = simulator.dreg_bits(14); \ saved_dregs[7] = simulator.dreg_bits(15); \ \ simulator.set_xreg(15, masm.GetLabelAddress<uint64_t>(&Func)); \ simulator.RunFrom(masm.GetLabelAddress<Instruction*>(&test)); \ \ assert(saved_xregs[0] == simulator.xreg(19)); \ assert(saved_xregs[1] == simulator.xreg(20)); \ assert(saved_xregs[2] == simulator.xreg(21)); \ assert(saved_xregs[3] == simulator.xreg(22)); \ assert(saved_xregs[4] == simulator.xreg(23)); \ assert(saved_xregs[5] == simulator.xreg(24)); \ assert(saved_xregs[6] == simulator.xreg(25)); \ assert(saved_xregs[7] == simulator.xreg(26)); \ assert(saved_xregs[8] == simulator.xreg(27)); \ assert(saved_xregs[9] == simulator.xreg(28)); \ assert(saved_xregs[10] == simulator.xreg(29)); \ assert(saved_xregs[11] == simulator.xreg(30)); \ assert(saved_xregs[12] == simulator.xreg(31)); \ \ assert(saved_dregs[0] == simulator.dreg_bits(8)); \ assert(saved_dregs[1] == simulator.dreg_bits(9)); \ assert(saved_dregs[2] == simulator.dreg_bits(10)); \ assert(saved_dregs[3] == simulator.dreg_bits(11)); \ assert(saved_dregs[4] == simulator.dreg_bits(12)); \ assert(saved_dregs[5] == simulator.dreg_bits(13)); \ assert(saved_dregs[6] == simulator.dreg_bits(14)); \ assert(saved_dregs[7] == simulator.dreg_bits(15)); \ \ } while (0) #define START() \ MacroAssembler masm(BUF_SIZE); \ Decoder decoder; \ Debugger simulator(&decoder); \ simulator.set_coloured_trace(Test::coloured_trace()); \ PrintDisassembler* pdis = NULL; \ Instrument* inst = NULL; \ if (Test::trace_sim()) { \ pdis = new PrintDisassembler(stdout); \ decoder.PrependVisitor(pdis); \ } \ if (Test::instruction_stats()) { \ inst = new Instrument("vixl_stats.csv", 10); \ inst->Enable(); \ decoder.AppendVisitor(inst); \ } \ RegisterDump regs; \ \ Label test; \ masm.Bind(&test); \ GenerateTestWrapper(&masm, ®s); \ masm.FinalizeCode() #define FACTORIAL_DOTEST(N) \ do { \ simulator.ResetState(); \ simulator.set_xreg(0, N); \ TEST_FUNCTION(factorial); \ assert(static_cast<uint64_t>(regs.xreg(0)) == FactorialC(N)); \ } while (0) TEST(factorial) { START(); Label factorial; masm.Bind(&factorial); GenerateFactorial(&masm); masm.FinalizeCode(); FACTORIAL_DOTEST(0); FACTORIAL_DOTEST(1); FACTORIAL_DOTEST(5); FACTORIAL_DOTEST(10); FACTORIAL_DOTEST(20); FACTORIAL_DOTEST(25); } #define FACTORIAL_REC_DOTEST(N) \ do { \ simulator.ResetState(); \ simulator.set_xreg(0, N); \ TEST_FUNCTION(factorial_rec); \ assert(static_cast<uint64_t>(regs.xreg(0)) == FactorialC(N)); \ } while (0) TEST(factorial_rec) { START(); Label factorial_rec; masm.Bind(&factorial_rec); GenerateFactorialRec(&masm); masm.FinalizeCode(); FACTORIAL_REC_DOTEST(0); FACTORIAL_REC_DOTEST(1); FACTORIAL_REC_DOTEST(5); FACTORIAL_REC_DOTEST(10); FACTORIAL_REC_DOTEST(20); FACTORIAL_REC_DOTEST(25); } TEST(neon_matrix_multiply) { START(); Label neon_matrix_multiply; masm.Bind(&neon_matrix_multiply); GenerateNEONMatrixMultiply(&masm); masm.FinalizeCode(); { const int kRowSize = 4; const int kColSize = 4; const int kLength = kRowSize * kColSize; float mat1[kLength], mat2[kLength], expected[kLength], output[kLength]; // Fill the two input matrices with some 32 bit floating point values. mat1[0] = 1.0f; mat1[4] = 2.0f; mat1[ 8] = 3.0f; mat1[12] = 4.0f; mat1[1] = 52.03f; mat1[5] = 12.24f; mat1[ 9] = 53.56f; mat1[13] = 22.22f; mat1[2] = 4.43f; mat1[6] = 5.00f; mat1[10] = 7.00f; mat1[14] = 3.11f; mat1[3] = 43.47f; mat1[7] = 10.97f; mat1[11] = 37.78f; mat1[15] = 90.91f; mat2[0] = 1.0f; mat2[4] = 11.24f; mat2[ 8] = 21.00f; mat2[12] = 21.31f; mat2[1] = 2.0f; mat2[5] = 2.24f; mat2[ 9] = 8.56f; mat2[13] = 52.03f; mat2[2] = 3.0f; mat2[6] = 51.00f; mat2[10] = 21.00f; mat2[14] = 33.11f; mat2[3] = 4.0f; mat2[7] = 0.00f; mat2[11] = 84.00f; mat2[15] = 1.97f; MatrixMultiplyC(expected, mat1, mat2); simulator.ResetState(); simulator.set_xreg(0, reinterpret_cast<uintptr_t>(output)); simulator.set_xreg(1, reinterpret_cast<uintptr_t>(mat1)); simulator.set_xreg(2, reinterpret_cast<uintptr_t>(mat2)); TEST_FUNCTION(neon_matrix_multiply); // Check that the results match what is expected. for (int i = 0; i < kLength; i++) { assert(output[i] == expected[i]); } } } TEST(add2_vectors) { START(); // Create and initialize the assembler and the simulator. Label add2_vectors; masm.Bind(&add2_vectors); GenerateAdd2Vectors(&masm); masm.FinalizeCode(); // Initialize input data for the example function. uint8_t A[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 200}; uint8_t B[] = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, \ 30, 31, 50}; uint8_t D[ARRAY_SIZE(A)]; uintptr_t A_addr = reinterpret_cast<uintptr_t>(A); uintptr_t B_addr = reinterpret_cast<uintptr_t>(B); // Check whether number of elements in vectors match. VIXL_STATIC_ASSERT(ARRAY_SIZE(A) == ARRAY_SIZE(B)); VIXL_STATIC_ASSERT(ARRAY_SIZE(A) == ARRAY_SIZE(D)); // Compute vector sum for comparison later. for (unsigned i = 0; i < ARRAY_SIZE(A); i++) { D[i] = A[i] + B[i]; } // Set up simulator and run example function. simulator.ResetState(); simulator.set_xreg(0, A_addr); simulator.set_xreg(1, B_addr); simulator.set_xreg(2, ARRAY_SIZE(A)); TEST_FUNCTION(add2_vectors); // Compare vectors to ensure sums are equal. for (unsigned i = 0; i < ARRAY_SIZE(A); i++) { assert(A[i] == D[i]); } } #define ADD3_DOUBLE_DOTEST(A, B, C) \ do { \ simulator.ResetState(); \ simulator.set_dreg(0, A); \ simulator.set_dreg(1, B); \ simulator.set_dreg(2, C); \ TEST_FUNCTION(add3_double); \ assert(regs.dreg(0) == Add3DoubleC(A, B, C)); \ } while (0) TEST(add3_double) { START(); Label add3_double; masm.Bind(&add3_double); GenerateAdd3Double(&masm); masm.FinalizeCode(); ADD3_DOUBLE_DOTEST(0.0, 0.0, 0.0); ADD3_DOUBLE_DOTEST(457.698, 14.36, 2.00025); ADD3_DOUBLE_DOTEST(-45.55, -98.9, -0.354); ADD3_DOUBLE_DOTEST(.55, .9, .12); } #define ADD4_DOUBLE_DOTEST(A, B, C, D) \ do { \ simulator.ResetState(); \ simulator.set_xreg(0, A); \ simulator.set_dreg(0, B); \ simulator.set_xreg(1, C); \ simulator.set_dreg(1, D); \ TEST_FUNCTION(add4_double); \ assert(regs.dreg(0) == Add4DoubleC(A, B, C, D)); \ } while (0) TEST(add4_double) { START(); Label add4_double; masm.Bind(&add4_double); GenerateAdd4Double(&masm); masm.FinalizeCode(); ADD4_DOUBLE_DOTEST(0, 0, 0, 0); ADD4_DOUBLE_DOTEST(4, 3.287, 6, 13.48); ADD4_DOUBLE_DOTEST(56, 665.368, 0, -4932.4697); ADD4_DOUBLE_DOTEST(56, 0, 546, 0); ADD4_DOUBLE_DOTEST(0, 0.658, 0, 0.00000011540026); } #define SUM_ARRAY_DOTEST(Array) \ do { \ simulator.ResetState(); \ uintptr_t addr = reinterpret_cast<uintptr_t>(Array); \ simulator.set_xreg(0, addr); \ simulator.set_xreg(1, ARRAY_SIZE(Array)); \ TEST_FUNCTION(sum_array); \ assert(regs.xreg(0) == SumArrayC(Array, ARRAY_SIZE(Array))); \ } while (0) TEST(sum_array) { START(); Label sum_array; masm.Bind(&sum_array); GenerateSumArray(&masm); masm.FinalizeCode(); uint8_t data1[] = { 4, 9, 13, 3, 2, 6, 5 }; SUM_ARRAY_DOTEST(data1); uint8_t data2[] = { 42 }; SUM_ARRAY_DOTEST(data2); uint8_t data3[1000]; for (unsigned int i = 0; i < ARRAY_SIZE(data3); ++i) data3[i] = 255; SUM_ARRAY_DOTEST(data3); } #define ABS_DOTEST(X) \ do { \ simulator.ResetState(); \ simulator.set_xreg(0, X); \ TEST_FUNCTION(func_abs); \ assert(regs.xreg(0) == abs(X)); \ } while (0) TEST(abs) { START(); Label func_abs; masm.Bind(&func_abs); GenerateAbs(&masm); masm.FinalizeCode(); ABS_DOTEST(-42); ABS_DOTEST(0); ABS_DOTEST(545); ABS_DOTEST(-428751489); } TEST(crc32) { START(); Label crc32; masm.Bind(&crc32); GenerateCrc32(&masm); masm.FinalizeCode(); const char *msg = "Hello World!"; uintptr_t msg_addr = reinterpret_cast<uintptr_t>(msg); size_t msg_size = strlen(msg); int64_t chksum = INT64_C(0xe3d6e35c); simulator.set_xreg(0, msg_addr); simulator.set_xreg(1, msg_size); TEST_FUNCTION(crc32); assert(regs.xreg(0) == chksum); } TEST(swap4) { START(); Label swap4; masm.Bind(&swap4); GenerateSwap4(&masm); masm.FinalizeCode(); int64_t a = 15; int64_t b = 26; int64_t c = 46; int64_t d = 79; simulator.set_xreg(0, a); simulator.set_xreg(1, b); simulator.set_xreg(2, c); simulator.set_xreg(3, d); TEST_FUNCTION(swap4); assert(regs.xreg(0) == d); assert(regs.xreg(1) == c); assert(regs.xreg(2) == b); assert(regs.xreg(3) == a); } TEST(swap_int32) { START(); Label swap_int32; masm.Bind(&swap_int32); GenerateSwapInt32(&masm); masm.FinalizeCode(); int32_t x = 168; int32_t y = 246; simulator.set_wreg(0, x); simulator.set_wreg(1, y); TEST_FUNCTION(swap_int32); assert(regs.wreg(0) == y); assert(regs.wreg(1) == x); } #define CHECKBOUNDS_DOTEST(Value, Low, High) \ do { \ simulator.ResetState(); \ simulator.set_xreg(0, Value); \ simulator.set_xreg(1, Low); \ simulator.set_xreg(2, High); \ TEST_FUNCTION(check_bounds); \ assert(regs.xreg(0) == ((Low <= Value) && (Value <= High))); \ } while (0) TEST(check_bounds) { START(); Label check_bounds; masm.Bind(&check_bounds); GenerateCheckBounds(&masm); masm.FinalizeCode(); CHECKBOUNDS_DOTEST(0, 100, 200); CHECKBOUNDS_DOTEST(58, 100, 200); CHECKBOUNDS_DOTEST(99, 100, 200); CHECKBOUNDS_DOTEST(100, 100, 200); CHECKBOUNDS_DOTEST(101, 100, 200); CHECKBOUNDS_DOTEST(150, 100, 200); CHECKBOUNDS_DOTEST(199, 100, 200); CHECKBOUNDS_DOTEST(200, 100, 200); CHECKBOUNDS_DOTEST(201, 100, 200); } #define GETTING_STARTED_DOTEST(Value) \ do { \ simulator.ResetState(); \ simulator.set_xreg(0, Value); \ TEST_FUNCTION(demo_function); \ assert(regs.xreg(0) == (Value & 0x1122334455667788)); \ } while (0) TEST(getting_started) { START(); Label demo_function; masm.Bind(&demo_function); GenerateDemoFunction(&masm); masm.FinalizeCode(); GETTING_STARTED_DOTEST(0x8899aabbccddeeff); GETTING_STARTED_DOTEST(0x1122334455667788); GETTING_STARTED_DOTEST(0x0000000000000000); GETTING_STARTED_DOTEST(0xffffffffffffffff); GETTING_STARTED_DOTEST(0x5a5a5a5a5a5a5a5a); } TEST(non_const_visitor) { byte assm_buf[BUF_SIZE]; MacroAssembler masm(assm_buf, BUF_SIZE); Label code_start, code_end; masm.Bind(&code_start); GenerateNonConstVisitorTestCode(&masm); masm.Bind(&code_end); masm.FinalizeCode(); Instruction* instr_start = masm.GetLabelAddress<Instruction*>(&code_start); Instruction* instr_end = masm.GetLabelAddress<Instruction*>(&code_end); int64_t res_orig = RunNonConstVisitorTestGeneratedCode(instr_start); ModifyNonConstVisitorTestGeneratedCode(instr_start, instr_end); int64_t res_mod = RunNonConstVisitorTestGeneratedCode(instr_start); assert(res_orig == -res_mod); } TEST(literal_example) { VIXL_ASSERT(LiteralExample(1, 2) == 3); VIXL_ASSERT( LiteralExample(INT64_C(0x100000000), 0x1) == INT64_C(0x100000001)); } #endif // VIXL_INCLUDE_SIMULATOR