// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/dateparser.h"
#include "src/char-predicates-inl.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
bool DateParser::DayComposer::Write(FixedArray* output) {
if (index_ < 1) return false;
// Day and month defaults to 1.
while (index_ < kSize) {
comp_[index_++] = 1;
}
int year = 0; // Default year is 0 (=> 2000) for KJS compatibility.
int month = kNone;
int day = kNone;
if (named_month_ == kNone) {
if (is_iso_date_ || (index_ == 3 && !IsDay(comp_[0]))) {
// YMD
year = comp_[0];
month = comp_[1];
day = comp_[2];
} else {
// MD(Y)
month = comp_[0];
day = comp_[1];
if (index_ == 3) year = comp_[2];
}
} else {
month = named_month_;
if (index_ == 1) {
// MD or DM
day = comp_[0];
} else if (!IsDay(comp_[0])) {
// YMD, MYD, or YDM
year = comp_[0];
day = comp_[1];
} else {
// DMY, MDY, or DYM
day = comp_[0];
year = comp_[1];
}
}
if (!is_iso_date_) {
if (Between(year, 0, 49)) year += 2000;
else if (Between(year, 50, 99)) year += 1900;
}
if (!Smi::IsValid(year) || !IsMonth(month) || !IsDay(day)) return false;
output->set(YEAR, Smi::FromInt(year));
output->set(MONTH, Smi::FromInt(month - 1)); // 0-based
output->set(DAY, Smi::FromInt(day));
return true;
}
bool DateParser::TimeComposer::Write(FixedArray* output) {
// All time slots default to 0
while (index_ < kSize) {
comp_[index_++] = 0;
}
int& hour = comp_[0];
int& minute = comp_[1];
int& second = comp_[2];
int& millisecond = comp_[3];
if (hour_offset_ != kNone) {
if (!IsHour12(hour)) return false;
hour %= 12;
hour += hour_offset_;
}
if (!IsHour(hour) || !IsMinute(minute) ||
!IsSecond(second) || !IsMillisecond(millisecond)) {
// A 24th hour is allowed if minutes, seconds, and milliseconds are 0
if (hour != 24 || minute != 0 || second != 0 || millisecond != 0) {
return false;
}
}
output->set(HOUR, Smi::FromInt(hour));
output->set(MINUTE, Smi::FromInt(minute));
output->set(SECOND, Smi::FromInt(second));
output->set(MILLISECOND, Smi::FromInt(millisecond));
return true;
}
bool DateParser::TimeZoneComposer::Write(FixedArray* output) {
if (sign_ != kNone) {
if (hour_ == kNone) hour_ = 0;
if (minute_ == kNone) minute_ = 0;
// Avoid signed integer overflow (undefined behavior) by doing unsigned
// arithmetic.
unsigned total_seconds_unsigned = hour_ * 3600U + minute_ * 60U;
if (total_seconds_unsigned > Smi::kMaxValue) return false;
int total_seconds = static_cast<int>(total_seconds_unsigned);
if (sign_ < 0) {
total_seconds = -total_seconds;
}
DCHECK(Smi::IsValid(total_seconds));
output->set(UTC_OFFSET, Smi::FromInt(total_seconds));
} else {
output->set_null(UTC_OFFSET);
}
return true;
}
const int8_t DateParser::KeywordTable::
array[][DateParser::KeywordTable::kEntrySize] = {
{'j', 'a', 'n', DateParser::MONTH_NAME, 1},
{'f', 'e', 'b', DateParser::MONTH_NAME, 2},
{'m', 'a', 'r', DateParser::MONTH_NAME, 3},
{'a', 'p', 'r', DateParser::MONTH_NAME, 4},
{'m', 'a', 'y', DateParser::MONTH_NAME, 5},
{'j', 'u', 'n', DateParser::MONTH_NAME, 6},
{'j', 'u', 'l', DateParser::MONTH_NAME, 7},
{'a', 'u', 'g', DateParser::MONTH_NAME, 8},
{'s', 'e', 'p', DateParser::MONTH_NAME, 9},
{'o', 'c', 't', DateParser::MONTH_NAME, 10},
{'n', 'o', 'v', DateParser::MONTH_NAME, 11},
{'d', 'e', 'c', DateParser::MONTH_NAME, 12},
{'a', 'm', '\0', DateParser::AM_PM, 0},
{'p', 'm', '\0', DateParser::AM_PM, 12},
{'u', 't', '\0', DateParser::TIME_ZONE_NAME, 0},
{'u', 't', 'c', DateParser::TIME_ZONE_NAME, 0},
{'z', '\0', '\0', DateParser::TIME_ZONE_NAME, 0},
{'g', 'm', 't', DateParser::TIME_ZONE_NAME, 0},
{'c', 'd', 't', DateParser::TIME_ZONE_NAME, -5},
{'c', 's', 't', DateParser::TIME_ZONE_NAME, -6},
{'e', 'd', 't', DateParser::TIME_ZONE_NAME, -4},
{'e', 's', 't', DateParser::TIME_ZONE_NAME, -5},
{'m', 'd', 't', DateParser::TIME_ZONE_NAME, -6},
{'m', 's', 't', DateParser::TIME_ZONE_NAME, -7},
{'p', 'd', 't', DateParser::TIME_ZONE_NAME, -7},
{'p', 's', 't', DateParser::TIME_ZONE_NAME, -8},
{'t', '\0', '\0', DateParser::TIME_SEPARATOR, 0},
{'\0', '\0', '\0', DateParser::INVALID, 0},
};
// We could use perfect hashing here, but this is not a bottleneck.
int DateParser::KeywordTable::Lookup(const uint32_t* pre, int len) {
int i;
for (i = 0; array[i][kTypeOffset] != INVALID; i++) {
int j = 0;
while (j < kPrefixLength &&
pre[j] == static_cast<uint32_t>(array[i][j])) {
j++;
}
// Check if we have a match and the length is legal.
// Word longer than keyword is only allowed for month names.
if (j == kPrefixLength &&
(len <= kPrefixLength || array[i][kTypeOffset] == MONTH_NAME)) {
return i;
}
}
return i;
}
int DateParser::ReadMilliseconds(DateToken token) {
// Read first three significant digits of the original numeral,
// as inferred from the value and the number of digits.
// I.e., use the number of digits to see if there were
// leading zeros.
int number = token.number();
int length = token.length();
if (length < 3) {
// Less than three digits. Multiply to put most significant digit
// in hundreds position.
if (length == 1) {
number *= 100;
} else if (length == 2) {
number *= 10;
}
} else if (length > 3) {
if (length > kMaxSignificantDigits) length = kMaxSignificantDigits;
// More than three digits. Divide by 10^(length - 3) to get three
// most significant digits.
int factor = 1;
do {
DCHECK(factor <= 100000000); // factor won't overflow.
factor *= 10;
length--;
} while (length > 3);
number /= factor;
}
return number;
}
} // namespace internal
} // namespace v8