// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/dateparser.h" #include "src/char-predicates-inl.h" #include "src/objects-inl.h" namespace v8 { namespace internal { bool DateParser::DayComposer::Write(FixedArray* output) { if (index_ < 1) return false; // Day and month defaults to 1. while (index_ < kSize) { comp_[index_++] = 1; } int year = 0; // Default year is 0 (=> 2000) for KJS compatibility. int month = kNone; int day = kNone; if (named_month_ == kNone) { if (is_iso_date_ || (index_ == 3 && !IsDay(comp_[0]))) { // YMD year = comp_[0]; month = comp_[1]; day = comp_[2]; } else { // MD(Y) month = comp_[0]; day = comp_[1]; if (index_ == 3) year = comp_[2]; } } else { month = named_month_; if (index_ == 1) { // MD or DM day = comp_[0]; } else if (!IsDay(comp_[0])) { // YMD, MYD, or YDM year = comp_[0]; day = comp_[1]; } else { // DMY, MDY, or DYM day = comp_[0]; year = comp_[1]; } } if (!is_iso_date_) { if (Between(year, 0, 49)) year += 2000; else if (Between(year, 50, 99)) year += 1900; } if (!Smi::IsValid(year) || !IsMonth(month) || !IsDay(day)) return false; output->set(YEAR, Smi::FromInt(year)); output->set(MONTH, Smi::FromInt(month - 1)); // 0-based output->set(DAY, Smi::FromInt(day)); return true; } bool DateParser::TimeComposer::Write(FixedArray* output) { // All time slots default to 0 while (index_ < kSize) { comp_[index_++] = 0; } int& hour = comp_[0]; int& minute = comp_[1]; int& second = comp_[2]; int& millisecond = comp_[3]; if (hour_offset_ != kNone) { if (!IsHour12(hour)) return false; hour %= 12; hour += hour_offset_; } if (!IsHour(hour) || !IsMinute(minute) || !IsSecond(second) || !IsMillisecond(millisecond)) { // A 24th hour is allowed if minutes, seconds, and milliseconds are 0 if (hour != 24 || minute != 0 || second != 0 || millisecond != 0) { return false; } } output->set(HOUR, Smi::FromInt(hour)); output->set(MINUTE, Smi::FromInt(minute)); output->set(SECOND, Smi::FromInt(second)); output->set(MILLISECOND, Smi::FromInt(millisecond)); return true; } bool DateParser::TimeZoneComposer::Write(FixedArray* output) { if (sign_ != kNone) { if (hour_ == kNone) hour_ = 0; if (minute_ == kNone) minute_ = 0; // Avoid signed integer overflow (undefined behavior) by doing unsigned // arithmetic. unsigned total_seconds_unsigned = hour_ * 3600U + minute_ * 60U; if (total_seconds_unsigned > Smi::kMaxValue) return false; int total_seconds = static_cast<int>(total_seconds_unsigned); if (sign_ < 0) { total_seconds = -total_seconds; } DCHECK(Smi::IsValid(total_seconds)); output->set(UTC_OFFSET, Smi::FromInt(total_seconds)); } else { output->set_null(UTC_OFFSET); } return true; } const int8_t DateParser::KeywordTable:: array[][DateParser::KeywordTable::kEntrySize] = { {'j', 'a', 'n', DateParser::MONTH_NAME, 1}, {'f', 'e', 'b', DateParser::MONTH_NAME, 2}, {'m', 'a', 'r', DateParser::MONTH_NAME, 3}, {'a', 'p', 'r', DateParser::MONTH_NAME, 4}, {'m', 'a', 'y', DateParser::MONTH_NAME, 5}, {'j', 'u', 'n', DateParser::MONTH_NAME, 6}, {'j', 'u', 'l', DateParser::MONTH_NAME, 7}, {'a', 'u', 'g', DateParser::MONTH_NAME, 8}, {'s', 'e', 'p', DateParser::MONTH_NAME, 9}, {'o', 'c', 't', DateParser::MONTH_NAME, 10}, {'n', 'o', 'v', DateParser::MONTH_NAME, 11}, {'d', 'e', 'c', DateParser::MONTH_NAME, 12}, {'a', 'm', '\0', DateParser::AM_PM, 0}, {'p', 'm', '\0', DateParser::AM_PM, 12}, {'u', 't', '\0', DateParser::TIME_ZONE_NAME, 0}, {'u', 't', 'c', DateParser::TIME_ZONE_NAME, 0}, {'z', '\0', '\0', DateParser::TIME_ZONE_NAME, 0}, {'g', 'm', 't', DateParser::TIME_ZONE_NAME, 0}, {'c', 'd', 't', DateParser::TIME_ZONE_NAME, -5}, {'c', 's', 't', DateParser::TIME_ZONE_NAME, -6}, {'e', 'd', 't', DateParser::TIME_ZONE_NAME, -4}, {'e', 's', 't', DateParser::TIME_ZONE_NAME, -5}, {'m', 'd', 't', DateParser::TIME_ZONE_NAME, -6}, {'m', 's', 't', DateParser::TIME_ZONE_NAME, -7}, {'p', 'd', 't', DateParser::TIME_ZONE_NAME, -7}, {'p', 's', 't', DateParser::TIME_ZONE_NAME, -8}, {'t', '\0', '\0', DateParser::TIME_SEPARATOR, 0}, {'\0', '\0', '\0', DateParser::INVALID, 0}, }; // We could use perfect hashing here, but this is not a bottleneck. int DateParser::KeywordTable::Lookup(const uint32_t* pre, int len) { int i; for (i = 0; array[i][kTypeOffset] != INVALID; i++) { int j = 0; while (j < kPrefixLength && pre[j] == static_cast<uint32_t>(array[i][j])) { j++; } // Check if we have a match and the length is legal. // Word longer than keyword is only allowed for month names. if (j == kPrefixLength && (len <= kPrefixLength || array[i][kTypeOffset] == MONTH_NAME)) { return i; } } return i; } int DateParser::ReadMilliseconds(DateToken token) { // Read first three significant digits of the original numeral, // as inferred from the value and the number of digits. // I.e., use the number of digits to see if there were // leading zeros. int number = token.number(); int length = token.length(); if (length < 3) { // Less than three digits. Multiply to put most significant digit // in hundreds position. if (length == 1) { number *= 100; } else if (length == 2) { number *= 10; } } else if (length > 3) { if (length > kMaxSignificantDigits) length = kMaxSignificantDigits; // More than three digits. Divide by 10^(length - 3) to get three // most significant digits. int factor = 1; do { DCHECK(factor <= 100000000); // factor won't overflow. factor *= 10; length--; } while (length > 3); number /= factor; } return number; } } // namespace internal } // namespace v8