// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/cancelable-task.h"
#include "src/base/platform/platform.h"
#include "src/isolate.h"
namespace v8 {
namespace internal {
Cancelable::Cancelable(CancelableTaskManager* parent)
: parent_(parent), status_(kWaiting), id_(0), cancel_counter_(0) {
id_ = parent->Register(this);
CHECK(id_ != 0);
}
Cancelable::~Cancelable() {
// The following check is needed to avoid calling an already terminated
// manager object. This happens when the manager cancels all pending tasks
// in {CancelAndWait} only before destroying the manager object.
if (TryRun() || IsRunning()) {
parent_->RemoveFinishedTask(id_);
}
}
static bool ComparePointers(void* ptr1, void* ptr2) { return ptr1 == ptr2; }
CancelableTaskManager::CancelableTaskManager()
: task_id_counter_(0), cancelable_tasks_(ComparePointers) {}
uint32_t CancelableTaskManager::Register(Cancelable* task) {
base::LockGuard<base::Mutex> guard(&mutex_);
uint32_t id = ++task_id_counter_;
// The loop below is just used when task_id_counter_ overflows.
while ((id == 0) || (cancelable_tasks_.Lookup(reinterpret_cast<void*>(id),
id) != nullptr)) {
++id;
}
HashMap::Entry* entry =
cancelable_tasks_.LookupOrInsert(reinterpret_cast<void*>(id), id);
entry->value = task;
return id;
}
void CancelableTaskManager::RemoveFinishedTask(uint32_t id) {
base::LockGuard<base::Mutex> guard(&mutex_);
void* removed = cancelable_tasks_.Remove(reinterpret_cast<void*>(id), id);
USE(removed);
DCHECK(removed != nullptr);
cancelable_tasks_barrier_.NotifyOne();
}
bool CancelableTaskManager::TryAbort(uint32_t id) {
base::LockGuard<base::Mutex> guard(&mutex_);
HashMap::Entry* entry =
cancelable_tasks_.Lookup(reinterpret_cast<void*>(id), id);
if (entry != nullptr) {
Cancelable* value = reinterpret_cast<Cancelable*>(entry->value);
if (value->Cancel()) {
// Cannot call RemoveFinishedTask here because of recursive locking.
void* removed = cancelable_tasks_.Remove(reinterpret_cast<void*>(id), id);
USE(removed);
DCHECK(removed != nullptr);
cancelable_tasks_barrier_.NotifyOne();
return true;
}
}
return false;
}
void CancelableTaskManager::CancelAndWait() {
// Clean up all cancelable fore- and background tasks. Tasks are canceled on
// the way if possible, i.e., if they have not started yet. After each round
// of canceling we wait for the background tasks that have already been
// started.
base::LockGuard<base::Mutex> guard(&mutex_);
// HashMap does not support removing while iterating, hence keep a set of
// entries that are to be removed.
std::set<uint32_t> to_remove;
// Cancelable tasks could potentially register new tasks, requiring a loop
// here.
while (cancelable_tasks_.occupancy() > 0) {
for (HashMap::Entry* p = cancelable_tasks_.Start(); p != nullptr;
p = cancelable_tasks_.Next(p)) {
if (reinterpret_cast<Cancelable*>(p->value)->Cancel()) {
to_remove.insert(reinterpret_cast<Cancelable*>(p->value)->id());
}
}
// Remove tasks that were successfully canceled.
for (auto id : to_remove) {
cancelable_tasks_.Remove(reinterpret_cast<void*>(id), id);
}
to_remove.clear();
// Finally, wait for already running background tasks.
if (cancelable_tasks_.occupancy() > 0) {
cancelable_tasks_barrier_.Wait(&mutex_);
}
}
}
CancelableTask::CancelableTask(Isolate* isolate)
: Cancelable(isolate->cancelable_task_manager()), isolate_(isolate) {}
CancelableIdleTask::CancelableIdleTask(Isolate* isolate)
: Cancelable(isolate->cancelable_task_manager()), isolate_(isolate) {}
} // namespace internal
} // namespace v8