// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/cancelable-task.h" #include "src/base/platform/platform.h" #include "src/isolate.h" namespace v8 { namespace internal { Cancelable::Cancelable(CancelableTaskManager* parent) : parent_(parent), status_(kWaiting), id_(0), cancel_counter_(0) { id_ = parent->Register(this); CHECK(id_ != 0); } Cancelable::~Cancelable() { // The following check is needed to avoid calling an already terminated // manager object. This happens when the manager cancels all pending tasks // in {CancelAndWait} only before destroying the manager object. if (TryRun() || IsRunning()) { parent_->RemoveFinishedTask(id_); } } static bool ComparePointers(void* ptr1, void* ptr2) { return ptr1 == ptr2; } CancelableTaskManager::CancelableTaskManager() : task_id_counter_(0), cancelable_tasks_(ComparePointers) {} uint32_t CancelableTaskManager::Register(Cancelable* task) { base::LockGuard<base::Mutex> guard(&mutex_); uint32_t id = ++task_id_counter_; // The loop below is just used when task_id_counter_ overflows. while ((id == 0) || (cancelable_tasks_.Lookup(reinterpret_cast<void*>(id), id) != nullptr)) { ++id; } HashMap::Entry* entry = cancelable_tasks_.LookupOrInsert(reinterpret_cast<void*>(id), id); entry->value = task; return id; } void CancelableTaskManager::RemoveFinishedTask(uint32_t id) { base::LockGuard<base::Mutex> guard(&mutex_); void* removed = cancelable_tasks_.Remove(reinterpret_cast<void*>(id), id); USE(removed); DCHECK(removed != nullptr); cancelable_tasks_barrier_.NotifyOne(); } bool CancelableTaskManager::TryAbort(uint32_t id) { base::LockGuard<base::Mutex> guard(&mutex_); HashMap::Entry* entry = cancelable_tasks_.Lookup(reinterpret_cast<void*>(id), id); if (entry != nullptr) { Cancelable* value = reinterpret_cast<Cancelable*>(entry->value); if (value->Cancel()) { // Cannot call RemoveFinishedTask here because of recursive locking. void* removed = cancelable_tasks_.Remove(reinterpret_cast<void*>(id), id); USE(removed); DCHECK(removed != nullptr); cancelable_tasks_barrier_.NotifyOne(); return true; } } return false; } void CancelableTaskManager::CancelAndWait() { // Clean up all cancelable fore- and background tasks. Tasks are canceled on // the way if possible, i.e., if they have not started yet. After each round // of canceling we wait for the background tasks that have already been // started. base::LockGuard<base::Mutex> guard(&mutex_); // HashMap does not support removing while iterating, hence keep a set of // entries that are to be removed. std::set<uint32_t> to_remove; // Cancelable tasks could potentially register new tasks, requiring a loop // here. while (cancelable_tasks_.occupancy() > 0) { for (HashMap::Entry* p = cancelable_tasks_.Start(); p != nullptr; p = cancelable_tasks_.Next(p)) { if (reinterpret_cast<Cancelable*>(p->value)->Cancel()) { to_remove.insert(reinterpret_cast<Cancelable*>(p->value)->id()); } } // Remove tasks that were successfully canceled. for (auto id : to_remove) { cancelable_tasks_.Remove(reinterpret_cast<void*>(id), id); } to_remove.clear(); // Finally, wait for already running background tasks. if (cancelable_tasks_.occupancy() > 0) { cancelable_tasks_barrier_.Wait(&mutex_); } } } CancelableTask::CancelableTask(Isolate* isolate) : Cancelable(isolate->cancelable_task_manager()), isolate_(isolate) {} CancelableIdleTask::CancelableIdleTask(Isolate* isolate) : Cancelable(isolate->cancelable_task_manager()), isolate_(isolate) {} } // namespace internal } // namespace v8