/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_ml.h"
typedef struct CvDI
{
double d;
int i;
} CvDI;
int CV_CDECL
icvCmpDI( const void* a, const void* b, void* )
{
const CvDI* e1 = (const CvDI*) a;
const CvDI* e2 = (const CvDI*) b;
return (e1->d < e2->d) ? -1 : (e1->d > e2->d);
}
CV_IMPL void
cvCreateTestSet( int type, CvMat** samples,
int num_samples,
int num_features,
CvMat** responses,
int num_classes, ... )
{
CvMat* mean = NULL;
CvMat* cov = NULL;
CvMemStorage* storage = NULL;
CV_FUNCNAME( "cvCreateTestSet" );
__BEGIN__;
if( samples )
*samples = NULL;
if( responses )
*responses = NULL;
if( type != CV_TS_CONCENTRIC_SPHERES )
CV_ERROR( CV_StsBadArg, "Invalid type parameter" );
if( !samples )
CV_ERROR( CV_StsNullPtr, "samples parameter must be not NULL" );
if( !responses )
CV_ERROR( CV_StsNullPtr, "responses parameter must be not NULL" );
if( num_samples < 1 )
CV_ERROR( CV_StsBadArg, "num_samples parameter must be positive" );
if( num_features < 1 )
CV_ERROR( CV_StsBadArg, "num_features parameter must be positive" );
if( num_classes < 1 )
CV_ERROR( CV_StsBadArg, "num_classes parameter must be positive" );
if( type == CV_TS_CONCENTRIC_SPHERES )
{
CvSeqWriter writer;
CvSeqReader reader;
CvMat sample;
CvDI elem;
CvSeq* seq = NULL;
int i, cur_class;
CV_CALL( *samples = cvCreateMat( num_samples, num_features, CV_32FC1 ) );
CV_CALL( *responses = cvCreateMat( 1, num_samples, CV_32SC1 ) );
CV_CALL( mean = cvCreateMat( 1, num_features, CV_32FC1 ) );
CV_CALL( cvSetZero( mean ) );
CV_CALL( cov = cvCreateMat( num_features, num_features, CV_32FC1 ) );
CV_CALL( cvSetIdentity( cov ) );
/* fill the feature values matrix with random numbers drawn from standard
normal distribution */
CV_CALL( cvRandMVNormal( mean, cov, *samples ) );
/* calculate distances from the origin to the samples and put them
into the sequence along with indices */
CV_CALL( storage = cvCreateMemStorage() );
CV_CALL( cvStartWriteSeq( 0, sizeof( CvSeq ), sizeof( CvDI ), storage, &writer ));
for( i = 0; i < (*samples)->rows; ++i )
{
CV_CALL( cvGetRow( *samples, &sample, i ));
elem.i = i;
CV_CALL( elem.d = cvNorm( &sample, NULL, CV_L2 ));
CV_WRITE_SEQ_ELEM( elem, writer );
}
CV_CALL( seq = cvEndWriteSeq( &writer ) );
/* sort the sequence in a distance ascending order */
CV_CALL( cvSeqSort( seq, icvCmpDI, NULL ) );
/* assign class labels */
num_classes = MIN( num_samples, num_classes );
CV_CALL( cvStartReadSeq( seq, &reader ) );
CV_READ_SEQ_ELEM( elem, reader );
for( i = 0, cur_class = 0; i < num_samples; ++cur_class )
{
int last_idx;
double max_dst;
last_idx = num_samples * (cur_class + 1) / num_classes - 1;
CV_CALL( max_dst = (*((CvDI*) cvGetSeqElem( seq, last_idx ))).d );
max_dst = MAX( max_dst, elem.d );
for( ; elem.d <= max_dst && i < num_samples; ++i )
{
CV_MAT_ELEM( **responses, int, 0, elem.i ) = cur_class;
if( i < num_samples - 1 )
{
CV_READ_SEQ_ELEM( elem, reader );
}
}
}
}
__END__;
if( cvGetErrStatus() < 0 )
{
if( samples )
cvReleaseMat( samples );
if( responses )
cvReleaseMat( responses );
}
cvReleaseMat( &mean );
cvReleaseMat( &cov );
cvReleaseMemStorage( &storage );
}
/* End of file. */