/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_ml.h" typedef struct CvDI { double d; int i; } CvDI; int CV_CDECL icvCmpDI( const void* a, const void* b, void* ) { const CvDI* e1 = (const CvDI*) a; const CvDI* e2 = (const CvDI*) b; return (e1->d < e2->d) ? -1 : (e1->d > e2->d); } CV_IMPL void cvCreateTestSet( int type, CvMat** samples, int num_samples, int num_features, CvMat** responses, int num_classes, ... ) { CvMat* mean = NULL; CvMat* cov = NULL; CvMemStorage* storage = NULL; CV_FUNCNAME( "cvCreateTestSet" ); __BEGIN__; if( samples ) *samples = NULL; if( responses ) *responses = NULL; if( type != CV_TS_CONCENTRIC_SPHERES ) CV_ERROR( CV_StsBadArg, "Invalid type parameter" ); if( !samples ) CV_ERROR( CV_StsNullPtr, "samples parameter must be not NULL" ); if( !responses ) CV_ERROR( CV_StsNullPtr, "responses parameter must be not NULL" ); if( num_samples < 1 ) CV_ERROR( CV_StsBadArg, "num_samples parameter must be positive" ); if( num_features < 1 ) CV_ERROR( CV_StsBadArg, "num_features parameter must be positive" ); if( num_classes < 1 ) CV_ERROR( CV_StsBadArg, "num_classes parameter must be positive" ); if( type == CV_TS_CONCENTRIC_SPHERES ) { CvSeqWriter writer; CvSeqReader reader; CvMat sample; CvDI elem; CvSeq* seq = NULL; int i, cur_class; CV_CALL( *samples = cvCreateMat( num_samples, num_features, CV_32FC1 ) ); CV_CALL( *responses = cvCreateMat( 1, num_samples, CV_32SC1 ) ); CV_CALL( mean = cvCreateMat( 1, num_features, CV_32FC1 ) ); CV_CALL( cvSetZero( mean ) ); CV_CALL( cov = cvCreateMat( num_features, num_features, CV_32FC1 ) ); CV_CALL( cvSetIdentity( cov ) ); /* fill the feature values matrix with random numbers drawn from standard normal distribution */ CV_CALL( cvRandMVNormal( mean, cov, *samples ) ); /* calculate distances from the origin to the samples and put them into the sequence along with indices */ CV_CALL( storage = cvCreateMemStorage() ); CV_CALL( cvStartWriteSeq( 0, sizeof( CvSeq ), sizeof( CvDI ), storage, &writer )); for( i = 0; i < (*samples)->rows; ++i ) { CV_CALL( cvGetRow( *samples, &sample, i )); elem.i = i; CV_CALL( elem.d = cvNorm( &sample, NULL, CV_L2 )); CV_WRITE_SEQ_ELEM( elem, writer ); } CV_CALL( seq = cvEndWriteSeq( &writer ) ); /* sort the sequence in a distance ascending order */ CV_CALL( cvSeqSort( seq, icvCmpDI, NULL ) ); /* assign class labels */ num_classes = MIN( num_samples, num_classes ); CV_CALL( cvStartReadSeq( seq, &reader ) ); CV_READ_SEQ_ELEM( elem, reader ); for( i = 0, cur_class = 0; i < num_samples; ++cur_class ) { int last_idx; double max_dst; last_idx = num_samples * (cur_class + 1) / num_classes - 1; CV_CALL( max_dst = (*((CvDI*) cvGetSeqElem( seq, last_idx ))).d ); max_dst = MAX( max_dst, elem.d ); for( ; elem.d <= max_dst && i < num_samples; ++i ) { CV_MAT_ELEM( **responses, int, 0, elem.i ) = cur_class; if( i < num_samples - 1 ) { CV_READ_SEQ_ELEM( elem, reader ); } } } } __END__; if( cvGetErrStatus() < 0 ) { if( samples ) cvReleaseMat( samples ); if( responses ) cvReleaseMat( responses ); } cvReleaseMat( &mean ); cvReleaseMat( &cov ); cvReleaseMemStorage( &storage ); } /* End of file. */