/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Benjamin Franzke <benjaminfranzke@googlemail.com>
*/
#define _BSD_SOURCE
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include "gbm.h"
#include "gbmint.h"
#include "common.h"
#include "backend.h"
#define ARRAY_SIZE(a) (sizeof(a)/sizeof((a)[0]))
struct gbm_device *devices[16];
static int device_num = 0;
/** Returns the file description for the gbm device
*
* \return The fd that the struct gbm_device was created with
*/
GBM_EXPORT int
gbm_device_get_fd(struct gbm_device *gbm)
{
return gbm->fd;
}
/* FIXME: maybe superfluous, use udev subclass from the fd? */
/** Get the backend name for the given gbm device
*
* \return The backend name string - this belongs to the device and must not
* be freed
*/
GBM_EXPORT const char *
gbm_device_get_backend_name(struct gbm_device *gbm)
{
return gbm->name;
}
/** Test if a format is supported for a given set of usage flags.
*
* \param gbm The created buffer manager
* \param format The format to test
* \param usage A bitmask of the usages to test the format against
* \return 1 if the format is supported otherwise 0
*
* \sa enum gbm_bo_flags for the list of flags that the format can be
* tested against
*
* \sa enum gbm_bo_format for the list of formats
*/
int
gbm_device_is_format_supported(struct gbm_device *gbm,
uint32_t format, uint32_t usage)
{
return gbm->is_format_supported(gbm, format, usage);
}
/** Destroy the gbm device and free all resources associated with it.
*
* \param gbm The device created using gbm_create_device()
*/
GBM_EXPORT void
gbm_device_destroy(struct gbm_device *gbm)
{
gbm->refcount--;
if (gbm->refcount == 0)
gbm->destroy(gbm);
}
GBM_EXPORT struct gbm_device *
_gbm_mesa_get_device(int fd)
{
struct gbm_device *gbm = NULL;
struct stat buf;
dev_t dev;
int i;
if (fd < 0 || fstat(fd, &buf) < 0 || !S_ISCHR(buf.st_mode)) {
fprintf(stderr, "_gbm_mesa_get_device: invalid fd: %d\n", fd);
return NULL;
}
for (i = 0; i < device_num; ++i) {
dev = devices[i]->stat.st_rdev;
if (major(dev) == major(buf.st_rdev) &&
minor(dev) == minor(buf.st_rdev)) {
gbm = devices[i];
gbm->refcount++;
break;
}
}
return gbm;
}
/** Create a gbm device for allocating buffers
*
* The file descriptor passed in is used by the backend to communicate with
* platform for allocating the memory. For allocations using DRI this would be
* the file descriptor returned when opening a device such as \c
* /dev/dri/card0
*
* \param fd The file descriptor for an backend specific device
* \return The newly created struct gbm_device. The resources associated with
* the device should be freed with gbm_device_destroy() when it is no longer
* needed. If the creation of the device failed NULL will be returned.
*/
GBM_EXPORT struct gbm_device *
gbm_create_device(int fd)
{
struct gbm_device *gbm = NULL;
struct stat buf;
if (fd < 0 || fstat(fd, &buf) < 0 || !S_ISCHR(buf.st_mode)) {
fprintf(stderr, "gbm_create_device: invalid fd: %d\n", fd);
return NULL;
}
if (device_num == 0)
memset(devices, 0, sizeof devices);
gbm = _gbm_create_device(fd);
if (gbm == NULL)
return NULL;
gbm->dummy = gbm_create_device;
gbm->stat = buf;
gbm->refcount = 1;
if (device_num < ARRAY_SIZE(devices)-1)
devices[device_num++] = gbm;
return gbm;
}
/** Get the width of the buffer object
*
* \param bo The buffer object
* \return The width of the allocated buffer object
*
*/
GBM_EXPORT unsigned int
gbm_bo_get_width(struct gbm_bo *bo)
{
return bo->width;
}
/** Get the height of the buffer object
*
* \param bo The buffer object
* \return The height of the allocated buffer object
*/
GBM_EXPORT unsigned int
gbm_bo_get_height(struct gbm_bo *bo)
{
return bo->height;
}
/** Get the stride of the buffer object
*
* This is calculated by the backend when it does the allocation in
* gbm_bo_create()
*
* \param bo The buffer object
* \return The stride of the allocated buffer object in bytes
*/
GBM_EXPORT uint32_t
gbm_bo_get_stride(struct gbm_bo *bo)
{
return bo->stride;
}
/** Get the format of the buffer object
*
* The format of the pixels in the buffer.
*
* \param bo The buffer object
* \return The format of buffer object, on of the GBM_FORMAT_* codes
*/
GBM_EXPORT uint32_t
gbm_bo_get_format(struct gbm_bo *bo)
{
return bo->format;
}
/** Get the handle of the buffer object
*
* This is stored in the platform generic union gbm_bo_handle type. However
* the format of this handle is platform specific.
*
* \param bo The buffer object
* \return Returns the handle of the allocated buffer object
*/
GBM_EXPORT union gbm_bo_handle
gbm_bo_get_handle(struct gbm_bo *bo)
{
return bo->handle;
}
/** Write data into the buffer object
*
* If the buffer object was created with the GBM_BO_USE_WRITE flag,
* this function can used to write data into the buffer object. The
* data is copied directly into the object and it's the responsiblity
* of the caller to make sure the data represents valid pixel data,
* according to the width, height, stride and format of the buffer object.
*
* \param bo The buffer object
* \param buf The data to write
* \param count The number of bytes to write
* \return Returns -1 on error, 0 otherwise
*/
GBM_EXPORT int
gbm_bo_write(struct gbm_bo *bo, const void *buf, size_t count)
{
return bo->gbm->bo_write(bo, buf, count);
}
/** Get the gbm device used to create the buffer object
*
* \param bo The buffer object
* \return Returns the gbm device with which the buffer object was created
*/
GBM_EXPORT struct gbm_device *
gbm_bo_get_device(struct gbm_bo *bo)
{
return bo->gbm;
}
/** Set the user data associated with a buffer object
*
* \param bo The buffer object
* \param data The data to associate to the buffer object
* \param destroy_user_data A callback (which may be %NULL) that will be
* called prior to the buffer destruction
*/
GBM_EXPORT void
gbm_bo_set_user_data(struct gbm_bo *bo, void *data,
void (*destroy_user_data)(struct gbm_bo *, void *))
{
bo->user_data = data;
bo->destroy_user_data = destroy_user_data;
}
/** Get the user data associated with a buffer object
*
* \param bo The buffer object
* \return Returns the user data associated with the buffer object or %NULL
* if no data was associated with it
*
* \sa gbm_bo_set_user_data()
*/
GBM_EXPORT void *
gbm_bo_get_user_data(struct gbm_bo *bo)
{
return bo->user_data;
}
/**
* Destroys the given buffer object and frees all resources associated with
* it.
*
* \param bo The buffer object
*/
GBM_EXPORT void
gbm_bo_destroy(struct gbm_bo *bo)
{
if (bo->destroy_user_data)
bo->destroy_user_data(bo, bo->user_data);
bo->gbm->bo_destroy(bo);
}
/**
* Allocate a buffer object for the given dimensions
*
* \param gbm The gbm device returned from gbm_create_device()
* \param width The width for the buffer
* \param height The height for the buffer
* \param format The format to use for the buffer
* \param usage The union of the usage flags for this buffer
*
* \return A newly allocated buffer that should be freed with gbm_bo_destroy()
* when no longer needed. If an error occurs during allocation %NULL will be
* returned.
*
* \sa enum gbm_bo_format for the list of formats
* \sa enum gbm_bo_flags for the list of usage flags
*/
GBM_EXPORT struct gbm_bo *
gbm_bo_create(struct gbm_device *gbm,
uint32_t width, uint32_t height,
uint32_t format, uint32_t usage)
{
if (width == 0 || height == 0)
return NULL;
if (usage & GBM_BO_USE_CURSOR_64X64 &&
(width != 64 || height != 64))
return NULL;
return gbm->bo_create(gbm, width, height, format, usage);
}
/**
* Create a gbm buffer object from an foreign object
*
* This function imports a foreign object and creates a new gbm bo for it.
* This enabled using the foreign object with a display API such as KMS.
* Currently two types of foreign objects are supported, indicated by the type
* argument:
*
* GBM_BO_IMPORT_WL_BUFFER
* GBM_BO_IMPORT_EGL_IMAGE
*
* The the gbm bo shares the underlying pixels but its life-time is
* independent of the foreign object.
*
* \param gbm The gbm device returned from gbm_create_device()
* \param gbm The type of object we're importing
* \param gbm Pointer to the external object
* \param usage The union of the usage flags for this buffer
*
* \return A newly allocated buffer object that should be freed with
* gbm_bo_destroy() when no longer needed.
*
* \sa enum gbm_bo_flags for the list of usage flags
*/
GBM_EXPORT struct gbm_bo *
gbm_bo_import(struct gbm_device *gbm,
uint32_t type, void *buffer, uint32_t usage)
{
return gbm->bo_import(gbm, type, buffer, usage);
}
/**
* Allocate a surface object
*
* \param gbm The gbm device returned from gbm_create_device()
* \param width The width for the surface
* \param height The height for the surface
* \param format The format to use for the surface
*
* \return A newly allocated surface that should be freed with
* gbm_surface_destroy() when no longer needed. If an error occurs
* during allocation %NULL will be returned.
*
* \sa enum gbm_bo_format for the list of formats
*/
GBM_EXPORT struct gbm_surface *
gbm_surface_create(struct gbm_device *gbm,
uint32_t width, uint32_t height,
uint32_t format, uint32_t flags)
{
return gbm->surface_create(gbm, width, height, format, flags);
}
/**
* Destroys the given surface and frees all resources associated with
* it.
*
* All buffers locked with gbm_surface_lock_front_buffer() should be
* released prior to calling this function.
*
* \param surf The surface
*/
GBM_EXPORT void
gbm_surface_destroy(struct gbm_surface *surf)
{
surf->gbm->surface_destroy(surf);
}
/**
* Lock the surface's current front buffer
*
* Lock rendering to the surface's current front buffer until it is
* released with gbm_surface_release_buffer().
*
* This function must be called exactly once after calling
* eglSwapBuffers. Calling it before any eglSwapBuffer has happened
* on the surface or two or more times after eglSwapBuffers is an
* error. A new bo representing the new front buffer is returned. On
* multiple invocations, all the returned bos must be released in
* order to release the actual surface buffer.
*
* \param surf The surface
*
* \return A buffer object that should be released with
* gbm_surface_release_buffer() when no longer needed. The implementation
* is free to reuse buffers released with gbm_surface_release_buffer() so
* this bo should not be destroyed using gbm_bo_destroy(). If an error
* occurs this function returns %NULL.
*/
GBM_EXPORT struct gbm_bo *
gbm_surface_lock_front_buffer(struct gbm_surface *surf)
{
return surf->gbm->surface_lock_front_buffer(surf);
}
/**
* Release a locked buffer obtained with gbm_surface_lock_front_buffer()
*
* Returns the underlying buffer to the gbm surface. Releasing a bo
* will typically make gbm_surface_has_free_buffer() return 1 and thus
* allow rendering the next frame, but not always. The implementation
* may choose to destroy the bo immediately or reuse it, in which case
* the user data associated with it is unchanged.
*
* \param surf The surface
* \param bo The buffer object
*/
GBM_EXPORT void
gbm_surface_release_buffer(struct gbm_surface *surf, struct gbm_bo *bo)
{
surf->gbm->surface_release_buffer(surf, bo);
}
/**
* Return whether or not a surface has free (non-locked) buffers
*
* Before starting a new frame, the surface must have a buffer
* available for rendering. Initially, a gbm surface will have a free
* buffer, but after one of more buffers have been locked (\sa
* gbm_surface_lock_front_buffer()), the application must check for a
* free buffer before rendering.
*
* If a surface doesn't have a free buffer, the application must
* return a buffer to the surface using gbm_surface_release_buffer()
* and after that, the application can query for free buffers again.
*
* \param surf The surface
* \return 1 if the surface has free buffers, 0 otherwise
*/
GBM_EXPORT int
gbm_surface_has_free_buffers(struct gbm_surface *surf)
{
return surf->gbm->surface_has_free_buffers(surf);
}