/*
* Copyright (C) 2005 Ben Skeggs.
*
* Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
* Adaptation and modification for ATI/AMD Radeon R500 GPU chipsets.
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
/**
* \file
*
* \author Ben Skeggs <darktama@iinet.net.au>
*
* \author Jerome Glisse <j.glisse@gmail.com>
*
* \author Corbin Simpson <MostAwesomeDude@gmail.com>
*
*/
#include "r500_fragprog.h"
#include "../r300_reg.h"
#include "radeon_program_pair.h"
#define PROG_CODE \
struct r500_fragment_program_code *code = &c->code->code.r500
#define error(fmt, args...) do { \
rc_error(&c->Base, "%s::%s(): " fmt "\n", \
__FILE__, __FUNCTION__, ##args); \
} while(0)
struct branch_info {
int If;
int Else;
int Endif;
};
struct r500_loop_info {
int BgnLoop;
int BranchDepth;
int * Brks;
int BrkCount;
int BrkReserved;
int * Conts;
int ContCount;
int ContReserved;
};
struct emit_state {
struct radeon_compiler * C;
struct r500_fragment_program_code * Code;
struct branch_info * Branches;
unsigned int CurrentBranchDepth;
unsigned int BranchesReserved;
struct r500_loop_info * Loops;
unsigned int CurrentLoopDepth;
unsigned int LoopsReserved;
unsigned int MaxBranchDepth;
};
static unsigned int translate_rgb_op(struct r300_fragment_program_compiler *c, rc_opcode opcode)
{
switch(opcode) {
case RC_OPCODE_CMP: return R500_ALU_RGBA_OP_CMP;
case RC_OPCODE_CND: return R500_ALU_RGBA_OP_CND;
case RC_OPCODE_DDX: return R500_ALU_RGBA_OP_MDH;
case RC_OPCODE_DDY: return R500_ALU_RGBA_OP_MDV;
case RC_OPCODE_DP3: return R500_ALU_RGBA_OP_DP3;
case RC_OPCODE_DP4: return R500_ALU_RGBA_OP_DP4;
case RC_OPCODE_FRC: return R500_ALU_RGBA_OP_FRC;
default:
error("translate_rgb_op: unknown opcode %s\n", rc_get_opcode_info(opcode)->Name);
/* fall through */
case RC_OPCODE_NOP:
/* fall through */
case RC_OPCODE_MAD: return R500_ALU_RGBA_OP_MAD;
case RC_OPCODE_MAX: return R500_ALU_RGBA_OP_MAX;
case RC_OPCODE_MIN: return R500_ALU_RGBA_OP_MIN;
case RC_OPCODE_REPL_ALPHA: return R500_ALU_RGBA_OP_SOP;
}
}
static unsigned int translate_alpha_op(struct r300_fragment_program_compiler *c, rc_opcode opcode)
{
switch(opcode) {
case RC_OPCODE_CMP: return R500_ALPHA_OP_CMP;
case RC_OPCODE_CND: return R500_ALPHA_OP_CND;
case RC_OPCODE_COS: return R500_ALPHA_OP_COS;
case RC_OPCODE_DDX: return R500_ALPHA_OP_MDH;
case RC_OPCODE_DDY: return R500_ALPHA_OP_MDV;
case RC_OPCODE_DP3: return R500_ALPHA_OP_DP;
case RC_OPCODE_DP4: return R500_ALPHA_OP_DP;
case RC_OPCODE_EX2: return R500_ALPHA_OP_EX2;
case RC_OPCODE_FRC: return R500_ALPHA_OP_FRC;
case RC_OPCODE_LG2: return R500_ALPHA_OP_LN2;
default:
error("translate_alpha_op: unknown opcode %s\n", rc_get_opcode_info(opcode)->Name);
/* fall through */
case RC_OPCODE_NOP:
/* fall through */
case RC_OPCODE_MAD: return R500_ALPHA_OP_MAD;
case RC_OPCODE_MAX: return R500_ALPHA_OP_MAX;
case RC_OPCODE_MIN: return R500_ALPHA_OP_MIN;
case RC_OPCODE_RCP: return R500_ALPHA_OP_RCP;
case RC_OPCODE_RSQ: return R500_ALPHA_OP_RSQ;
case RC_OPCODE_SIN: return R500_ALPHA_OP_SIN;
}
}
static unsigned int fix_hw_swizzle(unsigned int swz)
{
switch (swz) {
case RC_SWIZZLE_ZERO:
case RC_SWIZZLE_UNUSED:
swz = 4;
break;
case RC_SWIZZLE_HALF:
swz = 5;
break;
case RC_SWIZZLE_ONE:
swz = 6;
break;
}
return swz;
}
static unsigned int translate_arg_rgb(struct rc_pair_instruction *inst, int arg)
{
unsigned int t = inst->RGB.Arg[arg].Source;
int comp;
t |= inst->RGB.Arg[arg].Negate << 11;
t |= inst->RGB.Arg[arg].Abs << 12;
for(comp = 0; comp < 3; ++comp)
t |= fix_hw_swizzle(GET_SWZ(inst->RGB.Arg[arg].Swizzle, comp)) << (3*comp + 2);
return t;
}
static unsigned int translate_arg_alpha(struct rc_pair_instruction *inst, int i)
{
unsigned int t = inst->Alpha.Arg[i].Source;
t |= fix_hw_swizzle(GET_SWZ(inst->Alpha.Arg[i].Swizzle, 0)) << 2;
t |= inst->Alpha.Arg[i].Negate << 5;
t |= inst->Alpha.Arg[i].Abs << 6;
return t;
}
static uint32_t translate_alu_result_op(struct r300_fragment_program_compiler * c, rc_compare_func func)
{
switch(func) {
case RC_COMPARE_FUNC_EQUAL: return R500_INST_ALU_RESULT_OP_EQ;
case RC_COMPARE_FUNC_LESS: return R500_INST_ALU_RESULT_OP_LT;
case RC_COMPARE_FUNC_GEQUAL: return R500_INST_ALU_RESULT_OP_GE;
case RC_COMPARE_FUNC_NOTEQUAL: return R500_INST_ALU_RESULT_OP_NE;
default:
rc_error(&c->Base, "%s: unsupported compare func %i\n", __FUNCTION__, func);
return 0;
}
}
static void use_temporary(struct r500_fragment_program_code* code, unsigned int index)
{
if (index > code->max_temp_idx)
code->max_temp_idx = index;
}
static unsigned int use_source(struct r500_fragment_program_code* code, struct rc_pair_instruction_source src)
{
/* From docs:
* Note that inline constants set the MSB of ADDR0 and clear ADDR0_CONST.
* MSB = 1 << 7 */
if (!src.Used)
return 1 << 7;
if (src.File == RC_FILE_CONSTANT) {
return src.Index | R500_RGB_ADDR0_CONST;
} else if (src.File == RC_FILE_TEMPORARY || src.File == RC_FILE_INPUT) {
use_temporary(code, src.Index);
return src.Index;
} else if (src.File == RC_FILE_INLINE) {
return src.Index | (1 << 7);
}
return 0;
}
/**
* NOP the specified instruction if it is not a texture lookup.
*/
static void alu_nop(struct r300_fragment_program_compiler *c, int ip)
{
PROG_CODE;
if ((code->inst[ip].inst0 & 0x3) != R500_INST_TYPE_TEX) {
code->inst[ip].inst0 |= R500_INST_NOP;
}
}
/**
* Emit a paired ALU instruction.
*/
static void emit_paired(struct r300_fragment_program_compiler *c, struct rc_pair_instruction *inst)
{
int ip;
PROG_CODE;
if (code->inst_end >= c->Base.max_alu_insts-1) {
error("emit_alu: Too many instructions");
return;
}
ip = ++code->inst_end;
/* Quirk: MDH/MDV (DDX/DDY) need a NOP on previous non-TEX instructions. */
if (inst->RGB.Opcode == RC_OPCODE_DDX || inst->Alpha.Opcode == RC_OPCODE_DDX ||
inst->RGB.Opcode == RC_OPCODE_DDY || inst->Alpha.Opcode == RC_OPCODE_DDY) {
if (ip > 0) {
alu_nop(c, ip - 1);
}
}
code->inst[ip].inst5 = translate_rgb_op(c, inst->RGB.Opcode);
code->inst[ip].inst4 = translate_alpha_op(c, inst->Alpha.Opcode);
if (inst->RGB.OutputWriteMask || inst->Alpha.OutputWriteMask || inst->Alpha.DepthWriteMask) {
code->inst[ip].inst0 = R500_INST_TYPE_OUT;
if (inst->WriteALUResult) {
error("Cannot write output and ALU result at the same time");
return;
}
} else {
code->inst[ip].inst0 = R500_INST_TYPE_ALU;
}
code->inst[ip].inst0 |= (inst->SemWait << R500_INST_TEX_SEM_WAIT_SHIFT);
code->inst[ip].inst0 |= (inst->RGB.WriteMask << 11);
code->inst[ip].inst0 |= inst->Alpha.WriteMask ? 1 << 14 : 0;
code->inst[ip].inst0 |= (inst->RGB.OutputWriteMask << 15) | (inst->Alpha.OutputWriteMask << 18);
if (inst->Nop) {
code->inst[ip].inst0 |= R500_INST_NOP;
}
if (inst->Alpha.DepthWriteMask) {
code->inst[ip].inst4 |= R500_ALPHA_W_OMASK;
c->code->writes_depth = 1;
}
code->inst[ip].inst4 |= R500_ALPHA_ADDRD(inst->Alpha.DestIndex);
code->inst[ip].inst5 |= R500_ALU_RGBA_ADDRD(inst->RGB.DestIndex);
use_temporary(code, inst->Alpha.DestIndex);
use_temporary(code, inst->RGB.DestIndex);
if (inst->RGB.Saturate)
code->inst[ip].inst0 |= R500_INST_RGB_CLAMP;
if (inst->Alpha.Saturate)
code->inst[ip].inst0 |= R500_INST_ALPHA_CLAMP;
/* Set the presubtract operation. */
switch(inst->RGB.Src[RC_PAIR_PRESUB_SRC].Index) {
case RC_PRESUB_BIAS:
code->inst[ip].inst1 |= R500_RGB_SRCP_OP_1_MINUS_2RGB0;
break;
case RC_PRESUB_SUB:
code->inst[ip].inst1 |= R500_RGB_SRCP_OP_RGB1_MINUS_RGB0;
break;
case RC_PRESUB_ADD:
code->inst[ip].inst1 |= R500_RGB_SRCP_OP_RGB1_PLUS_RGB0;
break;
case RC_PRESUB_INV:
code->inst[ip].inst1 |= R500_RGB_SRCP_OP_1_MINUS_RGB0;
break;
default:
break;
}
switch(inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Index) {
case RC_PRESUB_BIAS:
code->inst[ip].inst2 |= R500_ALPHA_SRCP_OP_1_MINUS_2A0;
break;
case RC_PRESUB_SUB:
code->inst[ip].inst2 |= R500_ALPHA_SRCP_OP_A1_MINUS_A0;
break;
case RC_PRESUB_ADD:
code->inst[ip].inst2 |= R500_ALPHA_SRCP_OP_A1_PLUS_A0;
break;
case RC_PRESUB_INV:
code->inst[ip].inst2 |= R500_ALPHA_SRCP_OP_1_MINUS_A0;
break;
default:
break;
}
/* Set the output modifier */
code->inst[ip].inst3 |= inst->RGB.Omod << R500_ALU_RGB_OMOD_SHIFT;
code->inst[ip].inst4 |= inst->Alpha.Omod << R500_ALPHA_OMOD_SHIFT;
code->inst[ip].inst1 |= R500_RGB_ADDR0(use_source(code, inst->RGB.Src[0]));
code->inst[ip].inst1 |= R500_RGB_ADDR1(use_source(code, inst->RGB.Src[1]));
code->inst[ip].inst1 |= R500_RGB_ADDR2(use_source(code, inst->RGB.Src[2]));
code->inst[ip].inst2 |= R500_ALPHA_ADDR0(use_source(code, inst->Alpha.Src[0]));
code->inst[ip].inst2 |= R500_ALPHA_ADDR1(use_source(code, inst->Alpha.Src[1]));
code->inst[ip].inst2 |= R500_ALPHA_ADDR2(use_source(code, inst->Alpha.Src[2]));
code->inst[ip].inst3 |= translate_arg_rgb(inst, 0) << R500_ALU_RGB_SEL_A_SHIFT;
code->inst[ip].inst3 |= translate_arg_rgb(inst, 1) << R500_ALU_RGB_SEL_B_SHIFT;
code->inst[ip].inst5 |= translate_arg_rgb(inst, 2) << R500_ALU_RGBA_SEL_C_SHIFT;
code->inst[ip].inst4 |= translate_arg_alpha(inst, 0) << R500_ALPHA_SEL_A_SHIFT;
code->inst[ip].inst4 |= translate_arg_alpha(inst, 1) << R500_ALPHA_SEL_B_SHIFT;
code->inst[ip].inst5 |= translate_arg_alpha(inst, 2) << R500_ALU_RGBA_ALPHA_SEL_C_SHIFT;
code->inst[ip].inst3 |= R500_ALU_RGB_TARGET(inst->RGB.Target);
code->inst[ip].inst4 |= R500_ALPHA_TARGET(inst->Alpha.Target);
if (inst->WriteALUResult) {
code->inst[ip].inst3 |= R500_ALU_RGB_WMASK;
if (inst->WriteALUResult == RC_ALURESULT_X)
code->inst[ip].inst0 |= R500_INST_ALU_RESULT_SEL_RED;
else
code->inst[ip].inst0 |= R500_INST_ALU_RESULT_SEL_ALPHA;
code->inst[ip].inst0 |= translate_alu_result_op(c, inst->ALUResultCompare);
}
}
static unsigned int translate_strq_swizzle(unsigned int swizzle)
{
unsigned int swiz = 0;
int i;
for (i = 0; i < 4; i++)
swiz |= (GET_SWZ(swizzle, i) & 0x3) << i*2;
return swiz;
}
/**
* Emit a single TEX instruction
*/
static int emit_tex(struct r300_fragment_program_compiler *c, struct rc_sub_instruction *inst)
{
int ip;
PROG_CODE;
if (code->inst_end >= c->Base.max_alu_insts-1) {
error("emit_tex: Too many instructions");
return 0;
}
ip = ++code->inst_end;
code->inst[ip].inst0 = R500_INST_TYPE_TEX
| (inst->DstReg.WriteMask << 11)
| (inst->TexSemWait << R500_INST_TEX_SEM_WAIT_SHIFT);
code->inst[ip].inst1 = R500_TEX_ID(inst->TexSrcUnit)
| (inst->TexSemAcquire << R500_TEX_SEM_ACQUIRE_SHIFT);
if (inst->TexSrcTarget == RC_TEXTURE_RECT)
code->inst[ip].inst1 |= R500_TEX_UNSCALED;
switch (inst->Opcode) {
case RC_OPCODE_KIL:
code->inst[ip].inst1 |= R500_TEX_INST_TEXKILL;
break;
case RC_OPCODE_TEX:
code->inst[ip].inst1 |= R500_TEX_INST_LD;
break;
case RC_OPCODE_TXB:
code->inst[ip].inst1 |= R500_TEX_INST_LODBIAS;
break;
case RC_OPCODE_TXP:
code->inst[ip].inst1 |= R500_TEX_INST_PROJ;
break;
case RC_OPCODE_TXD:
code->inst[ip].inst1 |= R500_TEX_INST_DXDY;
break;
case RC_OPCODE_TXL:
code->inst[ip].inst1 |= R500_TEX_INST_LOD;
break;
default:
error("emit_tex can't handle opcode %s\n", rc_get_opcode_info(inst->Opcode)->Name);
}
use_temporary(code, inst->SrcReg[0].Index);
if (inst->Opcode != RC_OPCODE_KIL)
use_temporary(code, inst->DstReg.Index);
code->inst[ip].inst2 = R500_TEX_SRC_ADDR(inst->SrcReg[0].Index)
| (translate_strq_swizzle(inst->SrcReg[0].Swizzle) << 8)
| R500_TEX_DST_ADDR(inst->DstReg.Index)
| (GET_SWZ(inst->TexSwizzle, 0) << 24)
| (GET_SWZ(inst->TexSwizzle, 1) << 26)
| (GET_SWZ(inst->TexSwizzle, 2) << 28)
| (GET_SWZ(inst->TexSwizzle, 3) << 30)
;
if (inst->Opcode == RC_OPCODE_TXD) {
use_temporary(code, inst->SrcReg[1].Index);
use_temporary(code, inst->SrcReg[2].Index);
/* DX and DY parameters are specified in a separate register. */
code->inst[ip].inst3 =
R500_DX_ADDR(inst->SrcReg[1].Index) |
(translate_strq_swizzle(inst->SrcReg[1].Swizzle) << 8) |
R500_DY_ADDR(inst->SrcReg[2].Index) |
(translate_strq_swizzle(inst->SrcReg[2].Swizzle) << 24);
}
return 1;
}
static void emit_flowcontrol(struct emit_state * s, struct rc_instruction * inst)
{
unsigned int newip;
if (s->Code->inst_end >= s->C->max_alu_insts-1) {
rc_error(s->C, "emit_tex: Too many instructions");
return;
}
newip = ++s->Code->inst_end;
/* Currently all loops use the same integer constant to intialize
* the loop variables. */
if(!s->Code->int_constants[0]) {
s->Code->int_constants[0] = R500_FC_INT_CONST_KR(0xff);
s->Code->int_constant_count = 1;
}
s->Code->inst[newip].inst0 = R500_INST_TYPE_FC | R500_INST_ALU_WAIT;
switch(inst->U.I.Opcode){
struct branch_info * branch;
struct r500_loop_info * loop;
case RC_OPCODE_BGNLOOP:
memory_pool_array_reserve(&s->C->Pool, struct r500_loop_info,
s->Loops, s->CurrentLoopDepth, s->LoopsReserved, 1);
loop = &s->Loops[s->CurrentLoopDepth++];
memset(loop, 0, sizeof(struct r500_loop_info));
loop->BranchDepth = s->CurrentBranchDepth;
loop->BgnLoop = newip;
s->Code->inst[newip].inst2 = R500_FC_OP_LOOP
| R500_FC_JUMP_FUNC(0x00)
| R500_FC_IGNORE_UNCOVERED
;
break;
case RC_OPCODE_BRK:
loop = &s->Loops[s->CurrentLoopDepth - 1];
memory_pool_array_reserve(&s->C->Pool, int, loop->Brks,
loop->BrkCount, loop->BrkReserved, 1);
loop->Brks[loop->BrkCount++] = newip;
s->Code->inst[newip].inst2 = R500_FC_OP_BREAKLOOP
| R500_FC_JUMP_FUNC(0xff)
| R500_FC_B_OP1_DECR
| R500_FC_B_POP_CNT(
s->CurrentBranchDepth - loop->BranchDepth)
| R500_FC_IGNORE_UNCOVERED
;
break;
case RC_OPCODE_CONT:
loop = &s->Loops[s->CurrentLoopDepth - 1];
memory_pool_array_reserve(&s->C->Pool, int, loop->Conts,
loop->ContCount, loop->ContReserved, 1);
loop->Conts[loop->ContCount++] = newip;
s->Code->inst[newip].inst2 = R500_FC_OP_CONTINUE
| R500_FC_JUMP_FUNC(0xff)
| R500_FC_B_OP1_DECR
| R500_FC_B_POP_CNT(
s->CurrentBranchDepth - loop->BranchDepth)
| R500_FC_IGNORE_UNCOVERED
;
break;
case RC_OPCODE_ENDLOOP:
{
loop = &s->Loops[s->CurrentLoopDepth - 1];
/* Emit ENDLOOP */
s->Code->inst[newip].inst2 = R500_FC_OP_ENDLOOP
| R500_FC_JUMP_FUNC(0xff)
| R500_FC_JUMP_ANY
| R500_FC_IGNORE_UNCOVERED
;
/* The constant integer at index 0 is used by all loops. */
s->Code->inst[newip].inst3 = R500_FC_INT_ADDR(0)
| R500_FC_JUMP_ADDR(loop->BgnLoop + 1)
;
/* Set jump address and int constant for BGNLOOP */
s->Code->inst[loop->BgnLoop].inst3 = R500_FC_INT_ADDR(0)
| R500_FC_JUMP_ADDR(newip)
;
/* Set jump address for the BRK instructions. */
while(loop->BrkCount--) {
s->Code->inst[loop->Brks[loop->BrkCount]].inst3 =
R500_FC_JUMP_ADDR(newip + 1);
}
/* Set jump address for CONT instructions. */
while(loop->ContCount--) {
s->Code->inst[loop->Conts[loop->ContCount]].inst3 =
R500_FC_JUMP_ADDR(newip);
}
s->CurrentLoopDepth--;
break;
}
case RC_OPCODE_IF:
if ( s->CurrentBranchDepth >= R500_PFS_MAX_BRANCH_DEPTH_FULL) {
rc_error(s->C, "Branch depth exceeds hardware limit");
return;
}
memory_pool_array_reserve(&s->C->Pool, struct branch_info,
s->Branches, s->CurrentBranchDepth, s->BranchesReserved, 1);
branch = &s->Branches[s->CurrentBranchDepth++];
branch->If = newip;
branch->Else = -1;
branch->Endif = -1;
if (s->CurrentBranchDepth > s->MaxBranchDepth)
s->MaxBranchDepth = s->CurrentBranchDepth;
/* actual instruction is filled in at ENDIF time */
break;
case RC_OPCODE_ELSE:
if (!s->CurrentBranchDepth) {
rc_error(s->C, "%s: got ELSE outside a branch", __FUNCTION__);
return;
}
branch = &s->Branches[s->CurrentBranchDepth - 1];
branch->Else = newip;
/* actual instruction is filled in at ENDIF time */
break;
case RC_OPCODE_ENDIF:
if (!s->CurrentBranchDepth) {
rc_error(s->C, "%s: got ELSE outside a branch", __FUNCTION__);
return;
}
branch = &s->Branches[s->CurrentBranchDepth - 1];
branch->Endif = newip;
s->Code->inst[branch->Endif].inst2 = R500_FC_OP_JUMP
| R500_FC_A_OP_NONE /* no address stack */
| R500_FC_JUMP_ANY /* docs says set this, but I don't understand why */
| R500_FC_B_OP0_DECR /* decrement branch counter if stay */
| R500_FC_B_OP1_NONE /* no branch counter if stay */
| R500_FC_B_POP_CNT(1)
;
s->Code->inst[branch->Endif].inst3 = R500_FC_JUMP_ADDR(branch->Endif + 1);
s->Code->inst[branch->If].inst2 = R500_FC_OP_JUMP
| R500_FC_A_OP_NONE /* no address stack */
| R500_FC_JUMP_FUNC(0x0f) /* jump if ALU result is false */
| R500_FC_B_OP0_INCR /* increment branch counter if stay */
| R500_FC_IGNORE_UNCOVERED
;
if (branch->Else >= 0) {
/* increment branch counter also if jump */
s->Code->inst[branch->If].inst2 |= R500_FC_B_OP1_INCR;
s->Code->inst[branch->If].inst3 = R500_FC_JUMP_ADDR(branch->Else + 1);
s->Code->inst[branch->Else].inst2 = R500_FC_OP_JUMP
| R500_FC_A_OP_NONE /* no address stack */
| R500_FC_B_ELSE /* all active pixels want to jump */
| R500_FC_B_OP0_NONE /* no counter op if stay */
| R500_FC_B_OP1_DECR /* decrement branch counter if jump */
| R500_FC_B_POP_CNT(1)
;
s->Code->inst[branch->Else].inst3 = R500_FC_JUMP_ADDR(branch->Endif + 1);
} else {
/* don't touch branch counter on jump */
s->Code->inst[branch->If].inst2 |= R500_FC_B_OP1_NONE;
s->Code->inst[branch->If].inst3 = R500_FC_JUMP_ADDR(branch->Endif + 1);
}
s->CurrentBranchDepth--;
break;
default:
rc_error(s->C, "%s: unknown opcode %s\n", __FUNCTION__, rc_get_opcode_info(inst->U.I.Opcode)->Name);
}
}
void r500BuildFragmentProgramHwCode(struct radeon_compiler *c, void *user)
{
struct r300_fragment_program_compiler *compiler = (struct r300_fragment_program_compiler*)c;
struct emit_state s;
struct r500_fragment_program_code *code = &compiler->code->code.r500;
memset(&s, 0, sizeof(s));
s.C = &compiler->Base;
s.Code = code;
memset(code, 0, sizeof(*code));
code->max_temp_idx = 1;
code->inst_end = -1;
for(struct rc_instruction * inst = compiler->Base.Program.Instructions.Next;
inst != &compiler->Base.Program.Instructions && !compiler->Base.Error;
inst = inst->Next) {
if (inst->Type == RC_INSTRUCTION_NORMAL) {
const struct rc_opcode_info * opcode = rc_get_opcode_info(inst->U.I.Opcode);
if (opcode->IsFlowControl) {
emit_flowcontrol(&s, inst);
} else if (inst->U.I.Opcode == RC_OPCODE_BEGIN_TEX) {
continue;
} else {
emit_tex(compiler, &inst->U.I);
}
} else {
emit_paired(compiler, &inst->U.P);
}
}
if (code->max_temp_idx >= compiler->Base.max_temp_regs)
rc_error(&compiler->Base, "Too many hardware temporaries used");
if (compiler->Base.Error)
return;
if (code->inst_end == -1 ||
(code->inst[code->inst_end].inst0 & R500_INST_TYPE_MASK) != R500_INST_TYPE_OUT) {
int ip;
/* This may happen when dead-code elimination is disabled or
* when most of the fragment program logic is leading to a KIL */
if (code->inst_end >= compiler->Base.max_alu_insts-1) {
rc_error(&compiler->Base, "Introducing fake OUT: Too many instructions");
return;
}
ip = ++code->inst_end;
code->inst[ip].inst0 = R500_INST_TYPE_OUT | R500_INST_TEX_SEM_WAIT;
}
/* Make sure TEX_SEM_WAIT is set on the last instruction */
code->inst[code->inst_end].inst0 |= R500_INST_TEX_SEM_WAIT;
/* Enable full flow control mode if we are using loops or have if
* statements nested at least four deep. */
if (s.MaxBranchDepth >= 4 || s.LoopsReserved > 0) {
if (code->max_temp_idx < 1)
code->max_temp_idx = 1;
code->us_fc_ctrl |= R500_FC_FULL_FC_EN;
}
}