/* * Copyright (C) 2005 Ben Skeggs. * * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com> * Adaptation and modification for ATI/AMD Radeon R500 GPU chipsets. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ /** * \file * * \author Ben Skeggs <darktama@iinet.net.au> * * \author Jerome Glisse <j.glisse@gmail.com> * * \author Corbin Simpson <MostAwesomeDude@gmail.com> * */ #include "r500_fragprog.h" #include "../r300_reg.h" #include "radeon_program_pair.h" #define PROG_CODE \ struct r500_fragment_program_code *code = &c->code->code.r500 #define error(fmt, args...) do { \ rc_error(&c->Base, "%s::%s(): " fmt "\n", \ __FILE__, __FUNCTION__, ##args); \ } while(0) struct branch_info { int If; int Else; int Endif; }; struct r500_loop_info { int BgnLoop; int BranchDepth; int * Brks; int BrkCount; int BrkReserved; int * Conts; int ContCount; int ContReserved; }; struct emit_state { struct radeon_compiler * C; struct r500_fragment_program_code * Code; struct branch_info * Branches; unsigned int CurrentBranchDepth; unsigned int BranchesReserved; struct r500_loop_info * Loops; unsigned int CurrentLoopDepth; unsigned int LoopsReserved; unsigned int MaxBranchDepth; }; static unsigned int translate_rgb_op(struct r300_fragment_program_compiler *c, rc_opcode opcode) { switch(opcode) { case RC_OPCODE_CMP: return R500_ALU_RGBA_OP_CMP; case RC_OPCODE_CND: return R500_ALU_RGBA_OP_CND; case RC_OPCODE_DDX: return R500_ALU_RGBA_OP_MDH; case RC_OPCODE_DDY: return R500_ALU_RGBA_OP_MDV; case RC_OPCODE_DP3: return R500_ALU_RGBA_OP_DP3; case RC_OPCODE_DP4: return R500_ALU_RGBA_OP_DP4; case RC_OPCODE_FRC: return R500_ALU_RGBA_OP_FRC; default: error("translate_rgb_op: unknown opcode %s\n", rc_get_opcode_info(opcode)->Name); /* fall through */ case RC_OPCODE_NOP: /* fall through */ case RC_OPCODE_MAD: return R500_ALU_RGBA_OP_MAD; case RC_OPCODE_MAX: return R500_ALU_RGBA_OP_MAX; case RC_OPCODE_MIN: return R500_ALU_RGBA_OP_MIN; case RC_OPCODE_REPL_ALPHA: return R500_ALU_RGBA_OP_SOP; } } static unsigned int translate_alpha_op(struct r300_fragment_program_compiler *c, rc_opcode opcode) { switch(opcode) { case RC_OPCODE_CMP: return R500_ALPHA_OP_CMP; case RC_OPCODE_CND: return R500_ALPHA_OP_CND; case RC_OPCODE_COS: return R500_ALPHA_OP_COS; case RC_OPCODE_DDX: return R500_ALPHA_OP_MDH; case RC_OPCODE_DDY: return R500_ALPHA_OP_MDV; case RC_OPCODE_DP3: return R500_ALPHA_OP_DP; case RC_OPCODE_DP4: return R500_ALPHA_OP_DP; case RC_OPCODE_EX2: return R500_ALPHA_OP_EX2; case RC_OPCODE_FRC: return R500_ALPHA_OP_FRC; case RC_OPCODE_LG2: return R500_ALPHA_OP_LN2; default: error("translate_alpha_op: unknown opcode %s\n", rc_get_opcode_info(opcode)->Name); /* fall through */ case RC_OPCODE_NOP: /* fall through */ case RC_OPCODE_MAD: return R500_ALPHA_OP_MAD; case RC_OPCODE_MAX: return R500_ALPHA_OP_MAX; case RC_OPCODE_MIN: return R500_ALPHA_OP_MIN; case RC_OPCODE_RCP: return R500_ALPHA_OP_RCP; case RC_OPCODE_RSQ: return R500_ALPHA_OP_RSQ; case RC_OPCODE_SIN: return R500_ALPHA_OP_SIN; } } static unsigned int fix_hw_swizzle(unsigned int swz) { switch (swz) { case RC_SWIZZLE_ZERO: case RC_SWIZZLE_UNUSED: swz = 4; break; case RC_SWIZZLE_HALF: swz = 5; break; case RC_SWIZZLE_ONE: swz = 6; break; } return swz; } static unsigned int translate_arg_rgb(struct rc_pair_instruction *inst, int arg) { unsigned int t = inst->RGB.Arg[arg].Source; int comp; t |= inst->RGB.Arg[arg].Negate << 11; t |= inst->RGB.Arg[arg].Abs << 12; for(comp = 0; comp < 3; ++comp) t |= fix_hw_swizzle(GET_SWZ(inst->RGB.Arg[arg].Swizzle, comp)) << (3*comp + 2); return t; } static unsigned int translate_arg_alpha(struct rc_pair_instruction *inst, int i) { unsigned int t = inst->Alpha.Arg[i].Source; t |= fix_hw_swizzle(GET_SWZ(inst->Alpha.Arg[i].Swizzle, 0)) << 2; t |= inst->Alpha.Arg[i].Negate << 5; t |= inst->Alpha.Arg[i].Abs << 6; return t; } static uint32_t translate_alu_result_op(struct r300_fragment_program_compiler * c, rc_compare_func func) { switch(func) { case RC_COMPARE_FUNC_EQUAL: return R500_INST_ALU_RESULT_OP_EQ; case RC_COMPARE_FUNC_LESS: return R500_INST_ALU_RESULT_OP_LT; case RC_COMPARE_FUNC_GEQUAL: return R500_INST_ALU_RESULT_OP_GE; case RC_COMPARE_FUNC_NOTEQUAL: return R500_INST_ALU_RESULT_OP_NE; default: rc_error(&c->Base, "%s: unsupported compare func %i\n", __FUNCTION__, func); return 0; } } static void use_temporary(struct r500_fragment_program_code* code, unsigned int index) { if (index > code->max_temp_idx) code->max_temp_idx = index; } static unsigned int use_source(struct r500_fragment_program_code* code, struct rc_pair_instruction_source src) { /* From docs: * Note that inline constants set the MSB of ADDR0 and clear ADDR0_CONST. * MSB = 1 << 7 */ if (!src.Used) return 1 << 7; if (src.File == RC_FILE_CONSTANT) { return src.Index | R500_RGB_ADDR0_CONST; } else if (src.File == RC_FILE_TEMPORARY || src.File == RC_FILE_INPUT) { use_temporary(code, src.Index); return src.Index; } else if (src.File == RC_FILE_INLINE) { return src.Index | (1 << 7); } return 0; } /** * NOP the specified instruction if it is not a texture lookup. */ static void alu_nop(struct r300_fragment_program_compiler *c, int ip) { PROG_CODE; if ((code->inst[ip].inst0 & 0x3) != R500_INST_TYPE_TEX) { code->inst[ip].inst0 |= R500_INST_NOP; } } /** * Emit a paired ALU instruction. */ static void emit_paired(struct r300_fragment_program_compiler *c, struct rc_pair_instruction *inst) { int ip; PROG_CODE; if (code->inst_end >= c->Base.max_alu_insts-1) { error("emit_alu: Too many instructions"); return; } ip = ++code->inst_end; /* Quirk: MDH/MDV (DDX/DDY) need a NOP on previous non-TEX instructions. */ if (inst->RGB.Opcode == RC_OPCODE_DDX || inst->Alpha.Opcode == RC_OPCODE_DDX || inst->RGB.Opcode == RC_OPCODE_DDY || inst->Alpha.Opcode == RC_OPCODE_DDY) { if (ip > 0) { alu_nop(c, ip - 1); } } code->inst[ip].inst5 = translate_rgb_op(c, inst->RGB.Opcode); code->inst[ip].inst4 = translate_alpha_op(c, inst->Alpha.Opcode); if (inst->RGB.OutputWriteMask || inst->Alpha.OutputWriteMask || inst->Alpha.DepthWriteMask) { code->inst[ip].inst0 = R500_INST_TYPE_OUT; if (inst->WriteALUResult) { error("Cannot write output and ALU result at the same time"); return; } } else { code->inst[ip].inst0 = R500_INST_TYPE_ALU; } code->inst[ip].inst0 |= (inst->SemWait << R500_INST_TEX_SEM_WAIT_SHIFT); code->inst[ip].inst0 |= (inst->RGB.WriteMask << 11); code->inst[ip].inst0 |= inst->Alpha.WriteMask ? 1 << 14 : 0; code->inst[ip].inst0 |= (inst->RGB.OutputWriteMask << 15) | (inst->Alpha.OutputWriteMask << 18); if (inst->Nop) { code->inst[ip].inst0 |= R500_INST_NOP; } if (inst->Alpha.DepthWriteMask) { code->inst[ip].inst4 |= R500_ALPHA_W_OMASK; c->code->writes_depth = 1; } code->inst[ip].inst4 |= R500_ALPHA_ADDRD(inst->Alpha.DestIndex); code->inst[ip].inst5 |= R500_ALU_RGBA_ADDRD(inst->RGB.DestIndex); use_temporary(code, inst->Alpha.DestIndex); use_temporary(code, inst->RGB.DestIndex); if (inst->RGB.Saturate) code->inst[ip].inst0 |= R500_INST_RGB_CLAMP; if (inst->Alpha.Saturate) code->inst[ip].inst0 |= R500_INST_ALPHA_CLAMP; /* Set the presubtract operation. */ switch(inst->RGB.Src[RC_PAIR_PRESUB_SRC].Index) { case RC_PRESUB_BIAS: code->inst[ip].inst1 |= R500_RGB_SRCP_OP_1_MINUS_2RGB0; break; case RC_PRESUB_SUB: code->inst[ip].inst1 |= R500_RGB_SRCP_OP_RGB1_MINUS_RGB0; break; case RC_PRESUB_ADD: code->inst[ip].inst1 |= R500_RGB_SRCP_OP_RGB1_PLUS_RGB0; break; case RC_PRESUB_INV: code->inst[ip].inst1 |= R500_RGB_SRCP_OP_1_MINUS_RGB0; break; default: break; } switch(inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Index) { case RC_PRESUB_BIAS: code->inst[ip].inst2 |= R500_ALPHA_SRCP_OP_1_MINUS_2A0; break; case RC_PRESUB_SUB: code->inst[ip].inst2 |= R500_ALPHA_SRCP_OP_A1_MINUS_A0; break; case RC_PRESUB_ADD: code->inst[ip].inst2 |= R500_ALPHA_SRCP_OP_A1_PLUS_A0; break; case RC_PRESUB_INV: code->inst[ip].inst2 |= R500_ALPHA_SRCP_OP_1_MINUS_A0; break; default: break; } /* Set the output modifier */ code->inst[ip].inst3 |= inst->RGB.Omod << R500_ALU_RGB_OMOD_SHIFT; code->inst[ip].inst4 |= inst->Alpha.Omod << R500_ALPHA_OMOD_SHIFT; code->inst[ip].inst1 |= R500_RGB_ADDR0(use_source(code, inst->RGB.Src[0])); code->inst[ip].inst1 |= R500_RGB_ADDR1(use_source(code, inst->RGB.Src[1])); code->inst[ip].inst1 |= R500_RGB_ADDR2(use_source(code, inst->RGB.Src[2])); code->inst[ip].inst2 |= R500_ALPHA_ADDR0(use_source(code, inst->Alpha.Src[0])); code->inst[ip].inst2 |= R500_ALPHA_ADDR1(use_source(code, inst->Alpha.Src[1])); code->inst[ip].inst2 |= R500_ALPHA_ADDR2(use_source(code, inst->Alpha.Src[2])); code->inst[ip].inst3 |= translate_arg_rgb(inst, 0) << R500_ALU_RGB_SEL_A_SHIFT; code->inst[ip].inst3 |= translate_arg_rgb(inst, 1) << R500_ALU_RGB_SEL_B_SHIFT; code->inst[ip].inst5 |= translate_arg_rgb(inst, 2) << R500_ALU_RGBA_SEL_C_SHIFT; code->inst[ip].inst4 |= translate_arg_alpha(inst, 0) << R500_ALPHA_SEL_A_SHIFT; code->inst[ip].inst4 |= translate_arg_alpha(inst, 1) << R500_ALPHA_SEL_B_SHIFT; code->inst[ip].inst5 |= translate_arg_alpha(inst, 2) << R500_ALU_RGBA_ALPHA_SEL_C_SHIFT; code->inst[ip].inst3 |= R500_ALU_RGB_TARGET(inst->RGB.Target); code->inst[ip].inst4 |= R500_ALPHA_TARGET(inst->Alpha.Target); if (inst->WriteALUResult) { code->inst[ip].inst3 |= R500_ALU_RGB_WMASK; if (inst->WriteALUResult == RC_ALURESULT_X) code->inst[ip].inst0 |= R500_INST_ALU_RESULT_SEL_RED; else code->inst[ip].inst0 |= R500_INST_ALU_RESULT_SEL_ALPHA; code->inst[ip].inst0 |= translate_alu_result_op(c, inst->ALUResultCompare); } } static unsigned int translate_strq_swizzle(unsigned int swizzle) { unsigned int swiz = 0; int i; for (i = 0; i < 4; i++) swiz |= (GET_SWZ(swizzle, i) & 0x3) << i*2; return swiz; } /** * Emit a single TEX instruction */ static int emit_tex(struct r300_fragment_program_compiler *c, struct rc_sub_instruction *inst) { int ip; PROG_CODE; if (code->inst_end >= c->Base.max_alu_insts-1) { error("emit_tex: Too many instructions"); return 0; } ip = ++code->inst_end; code->inst[ip].inst0 = R500_INST_TYPE_TEX | (inst->DstReg.WriteMask << 11) | (inst->TexSemWait << R500_INST_TEX_SEM_WAIT_SHIFT); code->inst[ip].inst1 = R500_TEX_ID(inst->TexSrcUnit) | (inst->TexSemAcquire << R500_TEX_SEM_ACQUIRE_SHIFT); if (inst->TexSrcTarget == RC_TEXTURE_RECT) code->inst[ip].inst1 |= R500_TEX_UNSCALED; switch (inst->Opcode) { case RC_OPCODE_KIL: code->inst[ip].inst1 |= R500_TEX_INST_TEXKILL; break; case RC_OPCODE_TEX: code->inst[ip].inst1 |= R500_TEX_INST_LD; break; case RC_OPCODE_TXB: code->inst[ip].inst1 |= R500_TEX_INST_LODBIAS; break; case RC_OPCODE_TXP: code->inst[ip].inst1 |= R500_TEX_INST_PROJ; break; case RC_OPCODE_TXD: code->inst[ip].inst1 |= R500_TEX_INST_DXDY; break; case RC_OPCODE_TXL: code->inst[ip].inst1 |= R500_TEX_INST_LOD; break; default: error("emit_tex can't handle opcode %s\n", rc_get_opcode_info(inst->Opcode)->Name); } use_temporary(code, inst->SrcReg[0].Index); if (inst->Opcode != RC_OPCODE_KIL) use_temporary(code, inst->DstReg.Index); code->inst[ip].inst2 = R500_TEX_SRC_ADDR(inst->SrcReg[0].Index) | (translate_strq_swizzle(inst->SrcReg[0].Swizzle) << 8) | R500_TEX_DST_ADDR(inst->DstReg.Index) | (GET_SWZ(inst->TexSwizzle, 0) << 24) | (GET_SWZ(inst->TexSwizzle, 1) << 26) | (GET_SWZ(inst->TexSwizzle, 2) << 28) | (GET_SWZ(inst->TexSwizzle, 3) << 30) ; if (inst->Opcode == RC_OPCODE_TXD) { use_temporary(code, inst->SrcReg[1].Index); use_temporary(code, inst->SrcReg[2].Index); /* DX and DY parameters are specified in a separate register. */ code->inst[ip].inst3 = R500_DX_ADDR(inst->SrcReg[1].Index) | (translate_strq_swizzle(inst->SrcReg[1].Swizzle) << 8) | R500_DY_ADDR(inst->SrcReg[2].Index) | (translate_strq_swizzle(inst->SrcReg[2].Swizzle) << 24); } return 1; } static void emit_flowcontrol(struct emit_state * s, struct rc_instruction * inst) { unsigned int newip; if (s->Code->inst_end >= s->C->max_alu_insts-1) { rc_error(s->C, "emit_tex: Too many instructions"); return; } newip = ++s->Code->inst_end; /* Currently all loops use the same integer constant to intialize * the loop variables. */ if(!s->Code->int_constants[0]) { s->Code->int_constants[0] = R500_FC_INT_CONST_KR(0xff); s->Code->int_constant_count = 1; } s->Code->inst[newip].inst0 = R500_INST_TYPE_FC | R500_INST_ALU_WAIT; switch(inst->U.I.Opcode){ struct branch_info * branch; struct r500_loop_info * loop; case RC_OPCODE_BGNLOOP: memory_pool_array_reserve(&s->C->Pool, struct r500_loop_info, s->Loops, s->CurrentLoopDepth, s->LoopsReserved, 1); loop = &s->Loops[s->CurrentLoopDepth++]; memset(loop, 0, sizeof(struct r500_loop_info)); loop->BranchDepth = s->CurrentBranchDepth; loop->BgnLoop = newip; s->Code->inst[newip].inst2 = R500_FC_OP_LOOP | R500_FC_JUMP_FUNC(0x00) | R500_FC_IGNORE_UNCOVERED ; break; case RC_OPCODE_BRK: loop = &s->Loops[s->CurrentLoopDepth - 1]; memory_pool_array_reserve(&s->C->Pool, int, loop->Brks, loop->BrkCount, loop->BrkReserved, 1); loop->Brks[loop->BrkCount++] = newip; s->Code->inst[newip].inst2 = R500_FC_OP_BREAKLOOP | R500_FC_JUMP_FUNC(0xff) | R500_FC_B_OP1_DECR | R500_FC_B_POP_CNT( s->CurrentBranchDepth - loop->BranchDepth) | R500_FC_IGNORE_UNCOVERED ; break; case RC_OPCODE_CONT: loop = &s->Loops[s->CurrentLoopDepth - 1]; memory_pool_array_reserve(&s->C->Pool, int, loop->Conts, loop->ContCount, loop->ContReserved, 1); loop->Conts[loop->ContCount++] = newip; s->Code->inst[newip].inst2 = R500_FC_OP_CONTINUE | R500_FC_JUMP_FUNC(0xff) | R500_FC_B_OP1_DECR | R500_FC_B_POP_CNT( s->CurrentBranchDepth - loop->BranchDepth) | R500_FC_IGNORE_UNCOVERED ; break; case RC_OPCODE_ENDLOOP: { loop = &s->Loops[s->CurrentLoopDepth - 1]; /* Emit ENDLOOP */ s->Code->inst[newip].inst2 = R500_FC_OP_ENDLOOP | R500_FC_JUMP_FUNC(0xff) | R500_FC_JUMP_ANY | R500_FC_IGNORE_UNCOVERED ; /* The constant integer at index 0 is used by all loops. */ s->Code->inst[newip].inst3 = R500_FC_INT_ADDR(0) | R500_FC_JUMP_ADDR(loop->BgnLoop + 1) ; /* Set jump address and int constant for BGNLOOP */ s->Code->inst[loop->BgnLoop].inst3 = R500_FC_INT_ADDR(0) | R500_FC_JUMP_ADDR(newip) ; /* Set jump address for the BRK instructions. */ while(loop->BrkCount--) { s->Code->inst[loop->Brks[loop->BrkCount]].inst3 = R500_FC_JUMP_ADDR(newip + 1); } /* Set jump address for CONT instructions. */ while(loop->ContCount--) { s->Code->inst[loop->Conts[loop->ContCount]].inst3 = R500_FC_JUMP_ADDR(newip); } s->CurrentLoopDepth--; break; } case RC_OPCODE_IF: if ( s->CurrentBranchDepth >= R500_PFS_MAX_BRANCH_DEPTH_FULL) { rc_error(s->C, "Branch depth exceeds hardware limit"); return; } memory_pool_array_reserve(&s->C->Pool, struct branch_info, s->Branches, s->CurrentBranchDepth, s->BranchesReserved, 1); branch = &s->Branches[s->CurrentBranchDepth++]; branch->If = newip; branch->Else = -1; branch->Endif = -1; if (s->CurrentBranchDepth > s->MaxBranchDepth) s->MaxBranchDepth = s->CurrentBranchDepth; /* actual instruction is filled in at ENDIF time */ break; case RC_OPCODE_ELSE: if (!s->CurrentBranchDepth) { rc_error(s->C, "%s: got ELSE outside a branch", __FUNCTION__); return; } branch = &s->Branches[s->CurrentBranchDepth - 1]; branch->Else = newip; /* actual instruction is filled in at ENDIF time */ break; case RC_OPCODE_ENDIF: if (!s->CurrentBranchDepth) { rc_error(s->C, "%s: got ELSE outside a branch", __FUNCTION__); return; } branch = &s->Branches[s->CurrentBranchDepth - 1]; branch->Endif = newip; s->Code->inst[branch->Endif].inst2 = R500_FC_OP_JUMP | R500_FC_A_OP_NONE /* no address stack */ | R500_FC_JUMP_ANY /* docs says set this, but I don't understand why */ | R500_FC_B_OP0_DECR /* decrement branch counter if stay */ | R500_FC_B_OP1_NONE /* no branch counter if stay */ | R500_FC_B_POP_CNT(1) ; s->Code->inst[branch->Endif].inst3 = R500_FC_JUMP_ADDR(branch->Endif + 1); s->Code->inst[branch->If].inst2 = R500_FC_OP_JUMP | R500_FC_A_OP_NONE /* no address stack */ | R500_FC_JUMP_FUNC(0x0f) /* jump if ALU result is false */ | R500_FC_B_OP0_INCR /* increment branch counter if stay */ | R500_FC_IGNORE_UNCOVERED ; if (branch->Else >= 0) { /* increment branch counter also if jump */ s->Code->inst[branch->If].inst2 |= R500_FC_B_OP1_INCR; s->Code->inst[branch->If].inst3 = R500_FC_JUMP_ADDR(branch->Else + 1); s->Code->inst[branch->Else].inst2 = R500_FC_OP_JUMP | R500_FC_A_OP_NONE /* no address stack */ | R500_FC_B_ELSE /* all active pixels want to jump */ | R500_FC_B_OP0_NONE /* no counter op if stay */ | R500_FC_B_OP1_DECR /* decrement branch counter if jump */ | R500_FC_B_POP_CNT(1) ; s->Code->inst[branch->Else].inst3 = R500_FC_JUMP_ADDR(branch->Endif + 1); } else { /* don't touch branch counter on jump */ s->Code->inst[branch->If].inst2 |= R500_FC_B_OP1_NONE; s->Code->inst[branch->If].inst3 = R500_FC_JUMP_ADDR(branch->Endif + 1); } s->CurrentBranchDepth--; break; default: rc_error(s->C, "%s: unknown opcode %s\n", __FUNCTION__, rc_get_opcode_info(inst->U.I.Opcode)->Name); } } void r500BuildFragmentProgramHwCode(struct radeon_compiler *c, void *user) { struct r300_fragment_program_compiler *compiler = (struct r300_fragment_program_compiler*)c; struct emit_state s; struct r500_fragment_program_code *code = &compiler->code->code.r500; memset(&s, 0, sizeof(s)); s.C = &compiler->Base; s.Code = code; memset(code, 0, sizeof(*code)); code->max_temp_idx = 1; code->inst_end = -1; for(struct rc_instruction * inst = compiler->Base.Program.Instructions.Next; inst != &compiler->Base.Program.Instructions && !compiler->Base.Error; inst = inst->Next) { if (inst->Type == RC_INSTRUCTION_NORMAL) { const struct rc_opcode_info * opcode = rc_get_opcode_info(inst->U.I.Opcode); if (opcode->IsFlowControl) { emit_flowcontrol(&s, inst); } else if (inst->U.I.Opcode == RC_OPCODE_BEGIN_TEX) { continue; } else { emit_tex(compiler, &inst->U.I); } } else { emit_paired(compiler, &inst->U.P); } } if (code->max_temp_idx >= compiler->Base.max_temp_regs) rc_error(&compiler->Base, "Too many hardware temporaries used"); if (compiler->Base.Error) return; if (code->inst_end == -1 || (code->inst[code->inst_end].inst0 & R500_INST_TYPE_MASK) != R500_INST_TYPE_OUT) { int ip; /* This may happen when dead-code elimination is disabled or * when most of the fragment program logic is leading to a KIL */ if (code->inst_end >= compiler->Base.max_alu_insts-1) { rc_error(&compiler->Base, "Introducing fake OUT: Too many instructions"); return; } ip = ++code->inst_end; code->inst[ip].inst0 = R500_INST_TYPE_OUT | R500_INST_TEX_SEM_WAIT; } /* Make sure TEX_SEM_WAIT is set on the last instruction */ code->inst[code->inst_end].inst0 |= R500_INST_TEX_SEM_WAIT; /* Enable full flow control mode if we are using loops or have if * statements nested at least four deep. */ if (s.MaxBranchDepth >= 4 || s.LoopsReserved > 0) { if (code->max_temp_idx < 1) code->max_temp_idx = 1; code->us_fc_ctrl |= R500_FC_FULL_FC_EN; } }