//===- RegisterInfoEmitter.cpp - Generate a Register File Desc. -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting a description of a target
// register file for a code generator. It uses instances of the Register,
// RegisterAliases, and RegisterClass classes to gather this information.
//
//===----------------------------------------------------------------------===//
#include "CodeGenRegisters.h"
#include "CodeGenTarget.h"
#include "SequenceToOffsetTable.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Format.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <set>
#include <vector>
using namespace llvm;
namespace {
class RegisterInfoEmitter {
RecordKeeper &Records;
public:
RegisterInfoEmitter(RecordKeeper &R) : Records(R) {}
// runEnums - Print out enum values for all of the registers.
void runEnums(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank);
// runMCDesc - Print out MC register descriptions.
void runMCDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank);
// runTargetHeader - Emit a header fragment for the register info emitter.
void runTargetHeader(raw_ostream &o, CodeGenTarget &Target,
CodeGenRegBank &Bank);
// runTargetDesc - Output the target register and register file descriptions.
void runTargetDesc(raw_ostream &o, CodeGenTarget &Target,
CodeGenRegBank &Bank);
// run - Output the register file description.
void run(raw_ostream &o);
private:
void EmitRegMapping(raw_ostream &o, const std::deque<CodeGenRegister> &Regs,
bool isCtor);
void EmitRegMappingTables(raw_ostream &o,
const std::deque<CodeGenRegister> &Regs,
bool isCtor);
void EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank,
const std::string &ClassName);
void emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank,
const std::string &ClassName);
void emitComposeSubRegIndexLaneMask(raw_ostream &OS, CodeGenRegBank &RegBank,
const std::string &ClassName);
};
} // End anonymous namespace
// runEnums - Print out enum values for all of the registers.
void RegisterInfoEmitter::runEnums(raw_ostream &OS,
CodeGenTarget &Target, CodeGenRegBank &Bank) {
const auto &Registers = Bank.getRegisters();
// Register enums are stored as uint16_t in the tables. Make sure we'll fit.
assert(Registers.size() <= 0xffff && "Too many regs to fit in tables");
std::string Namespace =
Registers.front().TheDef->getValueAsString("Namespace");
emitSourceFileHeader("Target Register Enum Values", OS);
OS << "\n#ifdef GET_REGINFO_ENUM\n";
OS << "#undef GET_REGINFO_ENUM\n";
OS << "namespace llvm {\n\n";
OS << "class MCRegisterClass;\n"
<< "extern const MCRegisterClass " << Namespace
<< "MCRegisterClasses[];\n\n";
if (!Namespace.empty())
OS << "namespace " << Namespace << " {\n";
OS << "enum {\n NoRegister,\n";
for (const auto &Reg : Registers)
OS << " " << Reg.getName() << " = " << Reg.EnumValue << ",\n";
assert(Registers.size() == Registers.back().EnumValue &&
"Register enum value mismatch!");
OS << " NUM_TARGET_REGS \t// " << Registers.size()+1 << "\n";
OS << "};\n";
if (!Namespace.empty())
OS << "}\n";
const auto &RegisterClasses = Bank.getRegClasses();
if (!RegisterClasses.empty()) {
// RegisterClass enums are stored as uint16_t in the tables.
assert(RegisterClasses.size() <= 0xffff &&
"Too many register classes to fit in tables");
OS << "\n// Register classes\n";
if (!Namespace.empty())
OS << "namespace " << Namespace << " {\n";
OS << "enum {\n";
for (const auto &RC : RegisterClasses)
OS << " " << RC.getName() << "RegClassID"
<< " = " << RC.EnumValue << ",\n";
OS << "\n };\n";
if (!Namespace.empty())
OS << "}\n";
}
const std::vector<Record*> &RegAltNameIndices = Target.getRegAltNameIndices();
// If the only definition is the default NoRegAltName, we don't need to
// emit anything.
if (RegAltNameIndices.size() > 1) {
OS << "\n// Register alternate name indices\n";
if (!Namespace.empty())
OS << "namespace " << Namespace << " {\n";
OS << "enum {\n";
for (unsigned i = 0, e = RegAltNameIndices.size(); i != e; ++i)
OS << " " << RegAltNameIndices[i]->getName() << ",\t// " << i << "\n";
OS << " NUM_TARGET_REG_ALT_NAMES = " << RegAltNameIndices.size() << "\n";
OS << "};\n";
if (!Namespace.empty())
OS << "}\n";
}
auto &SubRegIndices = Bank.getSubRegIndices();
if (!SubRegIndices.empty()) {
OS << "\n// Subregister indices\n";
std::string Namespace = SubRegIndices.front().getNamespace();
if (!Namespace.empty())
OS << "namespace " << Namespace << " {\n";
OS << "enum {\n NoSubRegister,\n";
unsigned i = 0;
for (const auto &Idx : SubRegIndices)
OS << " " << Idx.getName() << ",\t// " << ++i << "\n";
OS << " NUM_TARGET_SUBREGS\n};\n";
if (!Namespace.empty())
OS << "}\n";
}
OS << "} // End llvm namespace\n";
OS << "#endif // GET_REGINFO_ENUM\n\n";
}
static void printInt(raw_ostream &OS, int Val) {
OS << Val;
}
static const char *getMinimalTypeForRange(uint64_t Range) {
assert(Range < 0xFFFFFFFFULL && "Enum too large");
if (Range > 0xFFFF)
return "uint32_t";
if (Range > 0xFF)
return "uint16_t";
return "uint8_t";
}
void RegisterInfoEmitter::
EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank,
const std::string &ClassName) {
unsigned NumRCs = RegBank.getRegClasses().size();
unsigned NumSets = RegBank.getNumRegPressureSets();
OS << "/// Get the weight in units of pressure for this register class.\n"
<< "const RegClassWeight &" << ClassName << "::\n"
<< "getRegClassWeight(const TargetRegisterClass *RC) const {\n"
<< " static const RegClassWeight RCWeightTable[] = {\n";
for (const auto &RC : RegBank.getRegClasses()) {
const CodeGenRegister::Vec &Regs = RC.getMembers();
if (Regs.empty())
OS << " {0, 0";
else {
std::vector<unsigned> RegUnits;
RC.buildRegUnitSet(RegUnits);
OS << " {" << (*Regs.begin())->getWeight(RegBank)
<< ", " << RegBank.getRegUnitSetWeight(RegUnits);
}
OS << "}, \t// " << RC.getName() << "\n";
}
OS << " };\n"
<< " return RCWeightTable[RC->getID()];\n"
<< "}\n\n";
// Reasonable targets (not ARMv7) have unit weight for all units, so don't
// bother generating a table.
bool RegUnitsHaveUnitWeight = true;
for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits();
UnitIdx < UnitEnd; ++UnitIdx) {
if (RegBank.getRegUnit(UnitIdx).Weight > 1)
RegUnitsHaveUnitWeight = false;
}
OS << "/// Get the weight in units of pressure for this register unit.\n"
<< "unsigned " << ClassName << "::\n"
<< "getRegUnitWeight(unsigned RegUnit) const {\n"
<< " assert(RegUnit < " << RegBank.getNumNativeRegUnits()
<< " && \"invalid register unit\");\n";
if (!RegUnitsHaveUnitWeight) {
OS << " static const uint8_t RUWeightTable[] = {\n ";
for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits();
UnitIdx < UnitEnd; ++UnitIdx) {
const RegUnit &RU = RegBank.getRegUnit(UnitIdx);
assert(RU.Weight < 256 && "RegUnit too heavy");
OS << RU.Weight << ", ";
}
OS << "};\n"
<< " return RUWeightTable[RegUnit];\n";
}
else {
OS << " // All register units have unit weight.\n"
<< " return 1;\n";
}
OS << "}\n\n";
OS << "\n"
<< "// Get the number of dimensions of register pressure.\n"
<< "unsigned " << ClassName << "::getNumRegPressureSets() const {\n"
<< " return " << NumSets << ";\n}\n\n";
OS << "// Get the name of this register unit pressure set.\n"
<< "const char *" << ClassName << "::\n"
<< "getRegPressureSetName(unsigned Idx) const {\n"
<< " static const char *const PressureNameTable[] = {\n";
unsigned MaxRegUnitWeight = 0;
for (unsigned i = 0; i < NumSets; ++i ) {
const RegUnitSet &RegUnits = RegBank.getRegSetAt(i);
MaxRegUnitWeight = std::max(MaxRegUnitWeight, RegUnits.Weight);
OS << " \"" << RegUnits.Name << "\",\n";
}
OS << " };\n"
<< " return PressureNameTable[Idx];\n"
<< "}\n\n";
OS << "// Get the register unit pressure limit for this dimension.\n"
<< "// This limit must be adjusted dynamically for reserved registers.\n"
<< "unsigned " << ClassName << "::\n"
<< "getRegPressureSetLimit(const MachineFunction &MF, unsigned Idx) const {\n"
<< " static const " << getMinimalTypeForRange(MaxRegUnitWeight)
<< " PressureLimitTable[] = {\n";
for (unsigned i = 0; i < NumSets; ++i ) {
const RegUnitSet &RegUnits = RegBank.getRegSetAt(i);
OS << " " << RegUnits.Weight << ", \t// " << i << ": "
<< RegUnits.Name << "\n";
}
OS << " };\n"
<< " return PressureLimitTable[Idx];\n"
<< "}\n\n";
SequenceToOffsetTable<std::vector<int>> PSetsSeqs;
// This table may be larger than NumRCs if some register units needed a list
// of unit sets that did not correspond to a register class.
unsigned NumRCUnitSets = RegBank.getNumRegClassPressureSetLists();
std::vector<std::vector<int>> PSets(NumRCUnitSets);
for (unsigned i = 0, e = NumRCUnitSets; i != e; ++i) {
ArrayRef<unsigned> PSetIDs = RegBank.getRCPressureSetIDs(i);
PSets[i].reserve(PSetIDs.size());
for (ArrayRef<unsigned>::iterator PSetI = PSetIDs.begin(),
PSetE = PSetIDs.end(); PSetI != PSetE; ++PSetI) {
PSets[i].push_back(RegBank.getRegPressureSet(*PSetI).Order);
}
std::sort(PSets[i].begin(), PSets[i].end());
PSetsSeqs.add(PSets[i]);
}
PSetsSeqs.layout();
OS << "/// Table of pressure sets per register class or unit.\n"
<< "static const int RCSetsTable[] = {\n";
PSetsSeqs.emit(OS, printInt, "-1");
OS << "};\n\n";
OS << "/// Get the dimensions of register pressure impacted by this "
<< "register class.\n"
<< "/// Returns a -1 terminated array of pressure set IDs\n"
<< "const int* " << ClassName << "::\n"
<< "getRegClassPressureSets(const TargetRegisterClass *RC) const {\n";
OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size()-1)
<< " RCSetStartTable[] = {\n ";
for (unsigned i = 0, e = NumRCs; i != e; ++i) {
OS << PSetsSeqs.get(PSets[i]) << ",";
}
OS << "};\n"
<< " return &RCSetsTable[RCSetStartTable[RC->getID()]];\n"
<< "}\n\n";
OS << "/// Get the dimensions of register pressure impacted by this "
<< "register unit.\n"
<< "/// Returns a -1 terminated array of pressure set IDs\n"
<< "const int* " << ClassName << "::\n"
<< "getRegUnitPressureSets(unsigned RegUnit) const {\n"
<< " assert(RegUnit < " << RegBank.getNumNativeRegUnits()
<< " && \"invalid register unit\");\n";
OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size()-1)
<< " RUSetStartTable[] = {\n ";
for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits();
UnitIdx < UnitEnd; ++UnitIdx) {
OS << PSetsSeqs.get(PSets[RegBank.getRegUnit(UnitIdx).RegClassUnitSetsIdx])
<< ",";
}
OS << "};\n"
<< " return &RCSetsTable[RUSetStartTable[RegUnit]];\n"
<< "}\n\n";
}
void RegisterInfoEmitter::EmitRegMappingTables(
raw_ostream &OS, const std::deque<CodeGenRegister> &Regs, bool isCtor) {
// Collect all information about dwarf register numbers
typedef std::map<Record*, std::vector<int64_t>, LessRecordRegister> DwarfRegNumsMapTy;
DwarfRegNumsMapTy DwarfRegNums;
// First, just pull all provided information to the map
unsigned maxLength = 0;
for (auto &RE : Regs) {
Record *Reg = RE.TheDef;
std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers");
maxLength = std::max((size_t)maxLength, RegNums.size());
if (DwarfRegNums.count(Reg))
PrintWarning(Reg->getLoc(), Twine("DWARF numbers for register ") +
getQualifiedName(Reg) + "specified multiple times");
DwarfRegNums[Reg] = RegNums;
}
if (!maxLength)
return;
// Now we know maximal length of number list. Append -1's, where needed
for (DwarfRegNumsMapTy::iterator
I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I)
for (unsigned i = I->second.size(), e = maxLength; i != e; ++i)
I->second.push_back(-1);
std::string Namespace = Regs.front().TheDef->getValueAsString("Namespace");
OS << "// " << Namespace << " Dwarf<->LLVM register mappings.\n";
// Emit reverse information about the dwarf register numbers.
for (unsigned j = 0; j < 2; ++j) {
for (unsigned i = 0, e = maxLength; i != e; ++i) {
OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace;
OS << (j == 0 ? "DwarfFlavour" : "EHFlavour");
OS << i << "Dwarf2L[]";
if (!isCtor) {
OS << " = {\n";
// Store the mapping sorted by the LLVM reg num so lookup can be done
// with a binary search.
std::map<uint64_t, Record*> Dwarf2LMap;
for (DwarfRegNumsMapTy::iterator
I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
int DwarfRegNo = I->second[i];
if (DwarfRegNo < 0)
continue;
Dwarf2LMap[DwarfRegNo] = I->first;
}
for (std::map<uint64_t, Record*>::iterator
I = Dwarf2LMap.begin(), E = Dwarf2LMap.end(); I != E; ++I)
OS << " { " << I->first << "U, " << getQualifiedName(I->second)
<< " },\n";
OS << "};\n";
} else {
OS << ";\n";
}
// We have to store the size in a const global, it's used in multiple
// places.
OS << "extern const unsigned " << Namespace
<< (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2LSize";
if (!isCtor)
OS << " = array_lengthof(" << Namespace
<< (j == 0 ? "DwarfFlavour" : "EHFlavour") << i
<< "Dwarf2L);\n\n";
else
OS << ";\n\n";
}
}
for (auto &RE : Regs) {
Record *Reg = RE.TheDef;
const RecordVal *V = Reg->getValue("DwarfAlias");
if (!V || !V->getValue())
continue;
DefInit *DI = cast<DefInit>(V->getValue());
Record *Alias = DI->getDef();
DwarfRegNums[Reg] = DwarfRegNums[Alias];
}
// Emit information about the dwarf register numbers.
for (unsigned j = 0; j < 2; ++j) {
for (unsigned i = 0, e = maxLength; i != e; ++i) {
OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace;
OS << (j == 0 ? "DwarfFlavour" : "EHFlavour");
OS << i << "L2Dwarf[]";
if (!isCtor) {
OS << " = {\n";
// Store the mapping sorted by the Dwarf reg num so lookup can be done
// with a binary search.
for (DwarfRegNumsMapTy::iterator
I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
int RegNo = I->second[i];
if (RegNo == -1) // -1 is the default value, don't emit a mapping.
continue;
OS << " { " << getQualifiedName(I->first) << ", " << RegNo
<< "U },\n";
}
OS << "};\n";
} else {
OS << ";\n";
}
// We have to store the size in a const global, it's used in multiple
// places.
OS << "extern const unsigned " << Namespace
<< (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2DwarfSize";
if (!isCtor)
OS << " = array_lengthof(" << Namespace
<< (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf);\n\n";
else
OS << ";\n\n";
}
}
}
void RegisterInfoEmitter::EmitRegMapping(
raw_ostream &OS, const std::deque<CodeGenRegister> &Regs, bool isCtor) {
// Emit the initializer so the tables from EmitRegMappingTables get wired up
// to the MCRegisterInfo object.
unsigned maxLength = 0;
for (auto &RE : Regs) {
Record *Reg = RE.TheDef;
maxLength = std::max((size_t)maxLength,
Reg->getValueAsListOfInts("DwarfNumbers").size());
}
if (!maxLength)
return;
std::string Namespace = Regs.front().TheDef->getValueAsString("Namespace");
// Emit reverse information about the dwarf register numbers.
for (unsigned j = 0; j < 2; ++j) {
OS << " switch (";
if (j == 0)
OS << "DwarfFlavour";
else
OS << "EHFlavour";
OS << ") {\n"
<< " default:\n"
<< " llvm_unreachable(\"Unknown DWARF flavour\");\n";
for (unsigned i = 0, e = maxLength; i != e; ++i) {
OS << " case " << i << ":\n";
OS << " ";
if (!isCtor)
OS << "RI->";
std::string Tmp;
raw_string_ostream(Tmp) << Namespace
<< (j == 0 ? "DwarfFlavour" : "EHFlavour") << i
<< "Dwarf2L";
OS << "mapDwarfRegsToLLVMRegs(" << Tmp << ", " << Tmp << "Size, ";
if (j == 0)
OS << "false";
else
OS << "true";
OS << ");\n";
OS << " break;\n";
}
OS << " }\n";
}
// Emit information about the dwarf register numbers.
for (unsigned j = 0; j < 2; ++j) {
OS << " switch (";
if (j == 0)
OS << "DwarfFlavour";
else
OS << "EHFlavour";
OS << ") {\n"
<< " default:\n"
<< " llvm_unreachable(\"Unknown DWARF flavour\");\n";
for (unsigned i = 0, e = maxLength; i != e; ++i) {
OS << " case " << i << ":\n";
OS << " ";
if (!isCtor)
OS << "RI->";
std::string Tmp;
raw_string_ostream(Tmp) << Namespace
<< (j == 0 ? "DwarfFlavour" : "EHFlavour") << i
<< "L2Dwarf";
OS << "mapLLVMRegsToDwarfRegs(" << Tmp << ", " << Tmp << "Size, ";
if (j == 0)
OS << "false";
else
OS << "true";
OS << ");\n";
OS << " break;\n";
}
OS << " }\n";
}
}
// Print a BitVector as a sequence of hex numbers using a little-endian mapping.
// Width is the number of bits per hex number.
static void printBitVectorAsHex(raw_ostream &OS,
const BitVector &Bits,
unsigned Width) {
assert(Width <= 32 && "Width too large");
unsigned Digits = (Width + 3) / 4;
for (unsigned i = 0, e = Bits.size(); i < e; i += Width) {
unsigned Value = 0;
for (unsigned j = 0; j != Width && i + j != e; ++j)
Value |= Bits.test(i + j) << j;
OS << format("0x%0*x, ", Digits, Value);
}
}
// Helper to emit a set of bits into a constant byte array.
class BitVectorEmitter {
BitVector Values;
public:
void add(unsigned v) {
if (v >= Values.size())
Values.resize(((v/8)+1)*8); // Round up to the next byte.
Values[v] = true;
}
void print(raw_ostream &OS) {
printBitVectorAsHex(OS, Values, 8);
}
};
static void printSimpleValueType(raw_ostream &OS, MVT::SimpleValueType VT) {
OS << getEnumName(VT);
}
static void printSubRegIndex(raw_ostream &OS, const CodeGenSubRegIndex *Idx) {
OS << Idx->EnumValue;
}
// Differentially encoded register and regunit lists allow for better
// compression on regular register banks. The sequence is computed from the
// differential list as:
//
// out[0] = InitVal;
// out[n+1] = out[n] + diff[n]; // n = 0, 1, ...
//
// The initial value depends on the specific list. The list is terminated by a
// 0 differential which means we can't encode repeated elements.
typedef SmallVector<uint16_t, 4> DiffVec;
typedef SmallVector<unsigned, 4> MaskVec;
// Differentially encode a sequence of numbers into V. The starting value and
// terminating 0 are not added to V, so it will have the same size as List.
static
DiffVec &diffEncode(DiffVec &V, unsigned InitVal, SparseBitVector<> List) {
assert(V.empty() && "Clear DiffVec before diffEncode.");
uint16_t Val = uint16_t(InitVal);
for (uint16_t Cur : List) {
V.push_back(Cur - Val);
Val = Cur;
}
return V;
}
template<typename Iter>
static
DiffVec &diffEncode(DiffVec &V, unsigned InitVal, Iter Begin, Iter End) {
assert(V.empty() && "Clear DiffVec before diffEncode.");
uint16_t Val = uint16_t(InitVal);
for (Iter I = Begin; I != End; ++I) {
uint16_t Cur = (*I)->EnumValue;
V.push_back(Cur - Val);
Val = Cur;
}
return V;
}
static void printDiff16(raw_ostream &OS, uint16_t Val) {
OS << Val;
}
static void printMask(raw_ostream &OS, unsigned Val) {
OS << format("0x%08X", Val);
}
// Try to combine Idx's compose map into Vec if it is compatible.
// Return false if it's not possible.
static bool combine(const CodeGenSubRegIndex *Idx,
SmallVectorImpl<CodeGenSubRegIndex*> &Vec) {
const CodeGenSubRegIndex::CompMap &Map = Idx->getComposites();
for (const auto &I : Map) {
CodeGenSubRegIndex *&Entry = Vec[I.first->EnumValue - 1];
if (Entry && Entry != I.second)
return false;
}
// All entries are compatible. Make it so.
for (const auto &I : Map) {
auto *&Entry = Vec[I.first->EnumValue - 1];
assert((!Entry || Entry == I.second) &&
"Expected EnumValue to be unique");
Entry = I.second;
}
return true;
}
void
RegisterInfoEmitter::emitComposeSubRegIndices(raw_ostream &OS,
CodeGenRegBank &RegBank,
const std::string &ClName) {
const auto &SubRegIndices = RegBank.getSubRegIndices();
OS << "unsigned " << ClName
<< "::composeSubRegIndicesImpl(unsigned IdxA, unsigned IdxB) const {\n";
// Many sub-register indexes are composition-compatible, meaning that
//
// compose(IdxA, IdxB) == compose(IdxA', IdxB)
//
// for many IdxA, IdxA' pairs. Not all sub-register indexes can be composed.
// The illegal entries can be use as wildcards to compress the table further.
// Map each Sub-register index to a compatible table row.
SmallVector<unsigned, 4> RowMap;
SmallVector<SmallVector<CodeGenSubRegIndex*, 4>, 4> Rows;
auto SubRegIndicesSize =
std::distance(SubRegIndices.begin(), SubRegIndices.end());
for (const auto &Idx : SubRegIndices) {
unsigned Found = ~0u;
for (unsigned r = 0, re = Rows.size(); r != re; ++r) {
if (combine(&Idx, Rows[r])) {
Found = r;
break;
}
}
if (Found == ~0u) {
Found = Rows.size();
Rows.resize(Found + 1);
Rows.back().resize(SubRegIndicesSize);
combine(&Idx, Rows.back());
}
RowMap.push_back(Found);
}
// Output the row map if there is multiple rows.
if (Rows.size() > 1) {
OS << " static const " << getMinimalTypeForRange(Rows.size()) << " RowMap["
<< SubRegIndicesSize << "] = {\n ";
for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i)
OS << RowMap[i] << ", ";
OS << "\n };\n";
}
// Output the rows.
OS << " static const " << getMinimalTypeForRange(SubRegIndicesSize + 1)
<< " Rows[" << Rows.size() << "][" << SubRegIndicesSize << "] = {\n";
for (unsigned r = 0, re = Rows.size(); r != re; ++r) {
OS << " { ";
for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i)
if (Rows[r][i])
OS << Rows[r][i]->EnumValue << ", ";
else
OS << "0, ";
OS << "},\n";
}
OS << " };\n\n";
OS << " --IdxA; assert(IdxA < " << SubRegIndicesSize << ");\n"
<< " --IdxB; assert(IdxB < " << SubRegIndicesSize << ");\n";
if (Rows.size() > 1)
OS << " return Rows[RowMap[IdxA]][IdxB];\n";
else
OS << " return Rows[0][IdxB];\n";
OS << "}\n\n";
}
void
RegisterInfoEmitter::emitComposeSubRegIndexLaneMask(raw_ostream &OS,
CodeGenRegBank &RegBank,
const std::string &ClName) {
// See the comments in computeSubRegLaneMasks() for our goal here.
const auto &SubRegIndices = RegBank.getSubRegIndices();
// Create a list of Mask+Rotate operations, with equivalent entries merged.
SmallVector<unsigned, 4> SubReg2SequenceIndexMap;
SmallVector<SmallVector<MaskRolPair, 1>, 4> Sequences;
for (const auto &Idx : SubRegIndices) {
const SmallVector<MaskRolPair, 1> &IdxSequence
= Idx.CompositionLaneMaskTransform;
unsigned Found = ~0u;
unsigned SIdx = 0;
unsigned NextSIdx;
for (size_t s = 0, se = Sequences.size(); s != se; ++s, SIdx = NextSIdx) {
SmallVectorImpl<MaskRolPair> &Sequence = Sequences[s];
NextSIdx = SIdx + Sequence.size() + 1;
if (Sequence == IdxSequence) {
Found = SIdx;
break;
}
}
if (Found == ~0u) {
Sequences.push_back(IdxSequence);
Found = SIdx;
}
SubReg2SequenceIndexMap.push_back(Found);
}
OS << "unsigned " << ClName
<< "::composeSubRegIndexLaneMaskImpl(unsigned IdxA, unsigned LaneMask)"
" const {\n";
OS << " struct MaskRolOp {\n"
" unsigned Mask;\n"
" uint8_t RotateLeft;\n"
" };\n"
" static const MaskRolOp Seqs[] = {\n";
unsigned Idx = 0;
for (size_t s = 0, se = Sequences.size(); s != se; ++s) {
OS << " ";
const SmallVectorImpl<MaskRolPair> &Sequence = Sequences[s];
for (size_t p = 0, pe = Sequence.size(); p != pe; ++p) {
const MaskRolPair &P = Sequence[p];
OS << format("{ 0x%08X, %2u }, ", P.Mask, P.RotateLeft);
}
OS << "{ 0, 0 }";
if (s+1 != se)
OS << ", ";
OS << " // Sequence " << Idx << "\n";
Idx += Sequence.size() + 1;
}
OS << " };\n"
" static const MaskRolOp *const CompositeSequences[] = {\n";
for (size_t i = 0, e = SubRegIndices.size(); i != e; ++i) {
OS << " ";
unsigned Idx = SubReg2SequenceIndexMap[i];
OS << format("&Seqs[%u]", Idx);
if (i+1 != e)
OS << ",";
OS << " // to " << SubRegIndices[i].getName() << "\n";
}
OS << " };\n\n";
OS << " --IdxA; assert(IdxA < " << SubRegIndices.size()
<< " && \"Subregister index out of bounds\");\n"
" unsigned Result = 0;\n"
" for (const MaskRolOp *Ops = CompositeSequences[IdxA]; Ops->Mask != 0; ++Ops)"
" {\n"
" unsigned Masked = LaneMask & Ops->Mask;\n"
" Result |= (Masked << Ops->RotateLeft) & 0xFFFFFFFF;\n"
" Result |= (Masked >> ((32 - Ops->RotateLeft) & 0x1F));\n"
" }\n"
" return Result;\n"
"}\n";
}
//
// runMCDesc - Print out MC register descriptions.
//
void
RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target,
CodeGenRegBank &RegBank) {
emitSourceFileHeader("MC Register Information", OS);
OS << "\n#ifdef GET_REGINFO_MC_DESC\n";
OS << "#undef GET_REGINFO_MC_DESC\n";
const auto &Regs = RegBank.getRegisters();
auto &SubRegIndices = RegBank.getSubRegIndices();
// The lists of sub-registers and super-registers go in the same array. That
// allows us to share suffixes.
typedef std::vector<const CodeGenRegister*> RegVec;
// Differentially encoded lists.
SequenceToOffsetTable<DiffVec> DiffSeqs;
SmallVector<DiffVec, 4> SubRegLists(Regs.size());
SmallVector<DiffVec, 4> SuperRegLists(Regs.size());
SmallVector<DiffVec, 4> RegUnitLists(Regs.size());
SmallVector<unsigned, 4> RegUnitInitScale(Regs.size());
// List of lane masks accompanying register unit sequences.
SequenceToOffsetTable<MaskVec> LaneMaskSeqs;
SmallVector<MaskVec, 4> RegUnitLaneMasks(Regs.size());
// Keep track of sub-register names as well. These are not differentially
// encoded.
typedef SmallVector<const CodeGenSubRegIndex*, 4> SubRegIdxVec;
SequenceToOffsetTable<SubRegIdxVec, deref<llvm::less>> SubRegIdxSeqs;
SmallVector<SubRegIdxVec, 4> SubRegIdxLists(Regs.size());
SequenceToOffsetTable<std::string> RegStrings;
// Precompute register lists for the SequenceToOffsetTable.
unsigned i = 0;
for (auto I = Regs.begin(), E = Regs.end(); I != E; ++I, ++i) {
const auto &Reg = *I;
RegStrings.add(Reg.getName());
// Compute the ordered sub-register list.
SetVector<const CodeGenRegister*> SR;
Reg.addSubRegsPreOrder(SR, RegBank);
diffEncode(SubRegLists[i], Reg.EnumValue, SR.begin(), SR.end());
DiffSeqs.add(SubRegLists[i]);
// Compute the corresponding sub-register indexes.
SubRegIdxVec &SRIs = SubRegIdxLists[i];
for (unsigned j = 0, je = SR.size(); j != je; ++j)
SRIs.push_back(Reg.getSubRegIndex(SR[j]));
SubRegIdxSeqs.add(SRIs);
// Super-registers are already computed.
const RegVec &SuperRegList = Reg.getSuperRegs();
diffEncode(SuperRegLists[i], Reg.EnumValue, SuperRegList.begin(),
SuperRegList.end());
DiffSeqs.add(SuperRegLists[i]);
// Differentially encode the register unit list, seeded by register number.
// First compute a scale factor that allows more diff-lists to be reused:
//
// D0 -> (S0, S1)
// D1 -> (S2, S3)
//
// A scale factor of 2 allows D0 and D1 to share a diff-list. The initial
// value for the differential decoder is the register number multiplied by
// the scale.
//
// Check the neighboring registers for arithmetic progressions.
unsigned ScaleA = ~0u, ScaleB = ~0u;
SparseBitVector<> RUs = Reg.getNativeRegUnits();
if (I != Regs.begin() &&
std::prev(I)->getNativeRegUnits().count() == RUs.count())
ScaleB = *RUs.begin() - *std::prev(I)->getNativeRegUnits().begin();
if (std::next(I) != Regs.end() &&
std::next(I)->getNativeRegUnits().count() == RUs.count())
ScaleA = *std::next(I)->getNativeRegUnits().begin() - *RUs.begin();
unsigned Scale = std::min(ScaleB, ScaleA);
// Default the scale to 0 if it can't be encoded in 4 bits.
if (Scale >= 16)
Scale = 0;
RegUnitInitScale[i] = Scale;
DiffSeqs.add(diffEncode(RegUnitLists[i], Scale * Reg.EnumValue, RUs));
const auto &RUMasks = Reg.getRegUnitLaneMasks();
MaskVec &LaneMaskVec = RegUnitLaneMasks[i];
assert(LaneMaskVec.empty());
LaneMaskVec.insert(LaneMaskVec.begin(), RUMasks.begin(), RUMasks.end());
// Terminator mask should not be used inside of the list.
#ifndef NDEBUG
for (unsigned M : LaneMaskVec) {
assert(M != ~0u && "terminator mask should not be part of the list");
}
#endif
LaneMaskSeqs.add(LaneMaskVec);
}
// Compute the final layout of the sequence table.
DiffSeqs.layout();
LaneMaskSeqs.layout();
SubRegIdxSeqs.layout();
OS << "namespace llvm {\n\n";
const std::string &TargetName = Target.getName();
// Emit the shared table of differential lists.
OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[] = {\n";
DiffSeqs.emit(OS, printDiff16);
OS << "};\n\n";
// Emit the shared table of regunit lane mask sequences.
OS << "extern const unsigned " << TargetName << "LaneMaskLists[] = {\n";
LaneMaskSeqs.emit(OS, printMask, "~0u");
OS << "};\n\n";
// Emit the table of sub-register indexes.
OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[] = {\n";
SubRegIdxSeqs.emit(OS, printSubRegIndex);
OS << "};\n\n";
// Emit the table of sub-register index sizes.
OS << "extern const MCRegisterInfo::SubRegCoveredBits "
<< TargetName << "SubRegIdxRanges[] = {\n";
OS << " { " << (uint16_t)-1 << ", " << (uint16_t)-1 << " },\n";
for (const auto &Idx : SubRegIndices) {
OS << " { " << Idx.Offset << ", " << Idx.Size << " },\t// "
<< Idx.getName() << "\n";
}
OS << "};\n\n";
// Emit the string table.
RegStrings.layout();
OS << "extern const char " << TargetName << "RegStrings[] = {\n";
RegStrings.emit(OS, printChar);
OS << "};\n\n";
OS << "extern const MCRegisterDesc " << TargetName
<< "RegDesc[] = { // Descriptors\n";
OS << " { " << RegStrings.get("") << ", 0, 0, 0, 0, 0 },\n";
// Emit the register descriptors now.
i = 0;
for (const auto &Reg : Regs) {
OS << " { " << RegStrings.get(Reg.getName()) << ", "
<< DiffSeqs.get(SubRegLists[i]) << ", " << DiffSeqs.get(SuperRegLists[i])
<< ", " << SubRegIdxSeqs.get(SubRegIdxLists[i]) << ", "
<< (DiffSeqs.get(RegUnitLists[i]) * 16 + RegUnitInitScale[i]) << ", "
<< LaneMaskSeqs.get(RegUnitLaneMasks[i]) << " },\n";
++i;
}
OS << "};\n\n"; // End of register descriptors...
// Emit the table of register unit roots. Each regunit has one or two root
// registers.
OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2] = {\n";
for (unsigned i = 0, e = RegBank.getNumNativeRegUnits(); i != e; ++i) {
ArrayRef<const CodeGenRegister*> Roots = RegBank.getRegUnit(i).getRoots();
assert(!Roots.empty() && "All regunits must have a root register.");
assert(Roots.size() <= 2 && "More than two roots not supported yet.");
OS << " { " << getQualifiedName(Roots.front()->TheDef);
for (unsigned r = 1; r != Roots.size(); ++r)
OS << ", " << getQualifiedName(Roots[r]->TheDef);
OS << " },\n";
}
OS << "};\n\n";
const auto &RegisterClasses = RegBank.getRegClasses();
// Loop over all of the register classes... emitting each one.
OS << "namespace { // Register classes...\n";
SequenceToOffsetTable<std::string> RegClassStrings;
// Emit the register enum value arrays for each RegisterClass
for (const auto &RC : RegisterClasses) {
ArrayRef<Record*> Order = RC.getOrder();
// Give the register class a legal C name if it's anonymous.
std::string Name = RC.getName();
RegClassStrings.add(Name);
// Emit the register list now.
OS << " // " << Name << " Register Class...\n"
<< " const MCPhysReg " << Name
<< "[] = {\n ";
for (unsigned i = 0, e = Order.size(); i != e; ++i) {
Record *Reg = Order[i];
OS << getQualifiedName(Reg) << ", ";
}
OS << "\n };\n\n";
OS << " // " << Name << " Bit set.\n"
<< " const uint8_t " << Name
<< "Bits[] = {\n ";
BitVectorEmitter BVE;
for (unsigned i = 0, e = Order.size(); i != e; ++i) {
Record *Reg = Order[i];
BVE.add(Target.getRegBank().getReg(Reg)->EnumValue);
}
BVE.print(OS);
OS << "\n };\n\n";
}
OS << "}\n\n";
RegClassStrings.layout();
OS << "extern const char " << TargetName << "RegClassStrings[] = {\n";
RegClassStrings.emit(OS, printChar);
OS << "};\n\n";
OS << "extern const MCRegisterClass " << TargetName
<< "MCRegisterClasses[] = {\n";
for (const auto &RC : RegisterClasses) {
// Asserts to make sure values will fit in table assuming types from
// MCRegisterInfo.h
assert((RC.SpillSize/8) <= 0xffff && "SpillSize too large.");
assert((RC.SpillAlignment/8) <= 0xffff && "SpillAlignment too large.");
assert(RC.CopyCost >= -128 && RC.CopyCost <= 127 && "Copy cost too large.");
OS << " { " << RC.getName() << ", " << RC.getName() << "Bits, "
<< RegClassStrings.get(RC.getName()) << ", "
<< RC.getOrder().size() << ", sizeof(" << RC.getName() << "Bits), "
<< RC.getQualifiedName() + "RegClassID" << ", "
<< RC.SpillSize/8 << ", "
<< RC.SpillAlignment/8 << ", "
<< RC.CopyCost << ", "
<< RC.Allocatable << " },\n";
}
OS << "};\n\n";
EmitRegMappingTables(OS, Regs, false);
// Emit Reg encoding table
OS << "extern const uint16_t " << TargetName;
OS << "RegEncodingTable[] = {\n";
// Add entry for NoRegister
OS << " 0,\n";
for (const auto &RE : Regs) {
Record *Reg = RE.TheDef;
BitsInit *BI = Reg->getValueAsBitsInit("HWEncoding");
uint64_t Value = 0;
for (unsigned b = 0, be = BI->getNumBits(); b != be; ++b) {
if (BitInit *B = dyn_cast<BitInit>(BI->getBit(b)))
Value |= (uint64_t)B->getValue() << b;
}
OS << " " << Value << ",\n";
}
OS << "};\n"; // End of HW encoding table
// MCRegisterInfo initialization routine.
OS << "static inline void Init" << TargetName
<< "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, "
<< "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0, unsigned PC = 0) "
"{\n"
<< " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, "
<< Regs.size() + 1 << ", RA, PC, " << TargetName << "MCRegisterClasses, "
<< RegisterClasses.size() << ", " << TargetName << "RegUnitRoots, "
<< RegBank.getNumNativeRegUnits() << ", " << TargetName << "RegDiffLists, "
<< TargetName << "LaneMaskLists, " << TargetName << "RegStrings, "
<< TargetName << "RegClassStrings, " << TargetName << "SubRegIdxLists, "
<< (std::distance(SubRegIndices.begin(), SubRegIndices.end()) + 1) << ",\n"
<< TargetName << "SubRegIdxRanges, " << TargetName
<< "RegEncodingTable);\n\n";
EmitRegMapping(OS, Regs, false);
OS << "}\n\n";
OS << "} // End llvm namespace\n";
OS << "#endif // GET_REGINFO_MC_DESC\n\n";
}
void
RegisterInfoEmitter::runTargetHeader(raw_ostream &OS, CodeGenTarget &Target,
CodeGenRegBank &RegBank) {
emitSourceFileHeader("Register Information Header Fragment", OS);
OS << "\n#ifdef GET_REGINFO_HEADER\n";
OS << "#undef GET_REGINFO_HEADER\n";
const std::string &TargetName = Target.getName();
std::string ClassName = TargetName + "GenRegisterInfo";
OS << "#include \"llvm/Target/TargetRegisterInfo.h\"\n\n";
OS << "namespace llvm {\n\n";
OS << "class " << TargetName << "FrameLowering;\n\n";
OS << "struct " << ClassName << " : public TargetRegisterInfo {\n"
<< " explicit " << ClassName
<< "(unsigned RA, unsigned D = 0, unsigned E = 0, unsigned PC = 0);\n";
if (!RegBank.getSubRegIndices().empty()) {
OS << " unsigned composeSubRegIndicesImpl"
<< "(unsigned, unsigned) const override;\n"
<< " unsigned composeSubRegIndexLaneMaskImpl"
<< "(unsigned, unsigned) const override;\n"
<< " const TargetRegisterClass *getSubClassWithSubReg"
<< "(const TargetRegisterClass*, unsigned) const override;\n";
}
OS << " const RegClassWeight &getRegClassWeight("
<< "const TargetRegisterClass *RC) const override;\n"
<< " unsigned getRegUnitWeight(unsigned RegUnit) const override;\n"
<< " unsigned getNumRegPressureSets() const override;\n"
<< " const char *getRegPressureSetName(unsigned Idx) const override;\n"
<< " unsigned getRegPressureSetLimit(const MachineFunction &MF, unsigned "
"Idx) const override;\n"
<< " const int *getRegClassPressureSets("
<< "const TargetRegisterClass *RC) const override;\n"
<< " const int *getRegUnitPressureSets("
<< "unsigned RegUnit) const override;\n"
<< " ArrayRef<const char *> getRegMaskNames() const override;\n"
<< " ArrayRef<const uint32_t *> getRegMasks() const override;\n"
<< " /// Devirtualized TargetFrameLowering.\n"
<< " static const " << TargetName << "FrameLowering *getFrameLowering(\n"
<< " const MachineFunction &MF);\n"
<< "};\n\n";
const auto &RegisterClasses = RegBank.getRegClasses();
if (!RegisterClasses.empty()) {
OS << "namespace " << RegisterClasses.front().Namespace
<< " { // Register classes\n";
for (const auto &RC : RegisterClasses) {
const std::string &Name = RC.getName();
// Output the extern for the instance.
OS << " extern const TargetRegisterClass " << Name << "RegClass;\n";
}
OS << "} // end of namespace " << TargetName << "\n\n";
}
OS << "} // End llvm namespace\n";
OS << "#endif // GET_REGINFO_HEADER\n\n";
}
//
// runTargetDesc - Output the target register and register file descriptions.
//
void
RegisterInfoEmitter::runTargetDesc(raw_ostream &OS, CodeGenTarget &Target,
CodeGenRegBank &RegBank){
emitSourceFileHeader("Target Register and Register Classes Information", OS);
OS << "\n#ifdef GET_REGINFO_TARGET_DESC\n";
OS << "#undef GET_REGINFO_TARGET_DESC\n";
OS << "namespace llvm {\n\n";
// Get access to MCRegisterClass data.
OS << "extern const MCRegisterClass " << Target.getName()
<< "MCRegisterClasses[];\n";
// Start out by emitting each of the register classes.
const auto &RegisterClasses = RegBank.getRegClasses();
const auto &SubRegIndices = RegBank.getSubRegIndices();
// Collect all registers belonging to any allocatable class.
std::set<Record*> AllocatableRegs;
// Collect allocatable registers.
for (const auto &RC : RegisterClasses) {
ArrayRef<Record*> Order = RC.getOrder();
if (RC.Allocatable)
AllocatableRegs.insert(Order.begin(), Order.end());
}
// Build a shared array of value types.
SequenceToOffsetTable<SmallVector<MVT::SimpleValueType, 4> > VTSeqs;
for (const auto &RC : RegisterClasses)
VTSeqs.add(RC.VTs);
VTSeqs.layout();
OS << "\nstatic const MVT::SimpleValueType VTLists[] = {\n";
VTSeqs.emit(OS, printSimpleValueType, "MVT::Other");
OS << "};\n";
// Emit SubRegIndex names, skipping 0.
OS << "\nstatic const char *const SubRegIndexNameTable[] = { \"";
for (const auto &Idx : SubRegIndices) {
OS << Idx.getName();
OS << "\", \"";
}
OS << "\" };\n\n";
// Emit SubRegIndex lane masks, including 0.
OS << "\nstatic const unsigned SubRegIndexLaneMaskTable[] = {\n ~0u,\n";
for (const auto &Idx : SubRegIndices) {
OS << format(" 0x%08x, // ", Idx.LaneMask) << Idx.getName() << '\n';
}
OS << " };\n\n";
OS << "\n";
// Now that all of the structs have been emitted, emit the instances.
if (!RegisterClasses.empty()) {
OS << "\nstatic const TargetRegisterClass *const "
<< "NullRegClasses[] = { nullptr };\n\n";
// Emit register class bit mask tables. The first bit mask emitted for a
// register class, RC, is the set of sub-classes, including RC itself.
//
// If RC has super-registers, also create a list of subreg indices and bit
// masks, (Idx, Mask). The bit mask has a bit for every superreg regclass,
// SuperRC, that satisfies:
//
// For all SuperReg in SuperRC: SuperReg:Idx in RC
//
// The 0-terminated list of subreg indices starts at:
//
// RC->getSuperRegIndices() = SuperRegIdxSeqs + ...
//
// The corresponding bitmasks follow the sub-class mask in memory. Each
// mask has RCMaskWords uint32_t entries.
//
// Every bit mask present in the list has at least one bit set.
// Compress the sub-reg index lists.
typedef std::vector<const CodeGenSubRegIndex*> IdxList;
SmallVector<IdxList, 8> SuperRegIdxLists(RegisterClasses.size());
SequenceToOffsetTable<IdxList, deref<llvm::less>> SuperRegIdxSeqs;
BitVector MaskBV(RegisterClasses.size());
for (const auto &RC : RegisterClasses) {
OS << "static const uint32_t " << RC.getName() << "SubClassMask[] = {\n ";
printBitVectorAsHex(OS, RC.getSubClasses(), 32);
// Emit super-reg class masks for any relevant SubRegIndices that can
// project into RC.
IdxList &SRIList = SuperRegIdxLists[RC.EnumValue];
for (auto &Idx : SubRegIndices) {
MaskBV.reset();
RC.getSuperRegClasses(&Idx, MaskBV);
if (MaskBV.none())
continue;
SRIList.push_back(&Idx);
OS << "\n ";
printBitVectorAsHex(OS, MaskBV, 32);
OS << "// " << Idx.getName();
}
SuperRegIdxSeqs.add(SRIList);
OS << "\n};\n\n";
}
OS << "static const uint16_t SuperRegIdxSeqs[] = {\n";
SuperRegIdxSeqs.layout();
SuperRegIdxSeqs.emit(OS, printSubRegIndex);
OS << "};\n\n";
// Emit NULL terminated super-class lists.
for (const auto &RC : RegisterClasses) {
ArrayRef<CodeGenRegisterClass*> Supers = RC.getSuperClasses();
// Skip classes without supers. We can reuse NullRegClasses.
if (Supers.empty())
continue;
OS << "static const TargetRegisterClass *const "
<< RC.getName() << "Superclasses[] = {\n";
for (const auto *Super : Supers)
OS << " &" << Super->getQualifiedName() << "RegClass,\n";
OS << " nullptr\n};\n\n";
}
// Emit methods.
for (const auto &RC : RegisterClasses) {
if (!RC.AltOrderSelect.empty()) {
OS << "\nstatic inline unsigned " << RC.getName()
<< "AltOrderSelect(const MachineFunction &MF) {"
<< RC.AltOrderSelect << "}\n\n"
<< "static ArrayRef<MCPhysReg> " << RC.getName()
<< "GetRawAllocationOrder(const MachineFunction &MF) {\n";
for (unsigned oi = 1 , oe = RC.getNumOrders(); oi != oe; ++oi) {
ArrayRef<Record*> Elems = RC.getOrder(oi);
if (!Elems.empty()) {
OS << " static const MCPhysReg AltOrder" << oi << "[] = {";
for (unsigned elem = 0; elem != Elems.size(); ++elem)
OS << (elem ? ", " : " ") << getQualifiedName(Elems[elem]);
OS << " };\n";
}
}
OS << " const MCRegisterClass &MCR = " << Target.getName()
<< "MCRegisterClasses[" << RC.getQualifiedName() + "RegClassID];\n"
<< " const ArrayRef<MCPhysReg> Order[] = {\n"
<< " makeArrayRef(MCR.begin(), MCR.getNumRegs()";
for (unsigned oi = 1, oe = RC.getNumOrders(); oi != oe; ++oi)
if (RC.getOrder(oi).empty())
OS << "),\n ArrayRef<MCPhysReg>(";
else
OS << "),\n makeArrayRef(AltOrder" << oi;
OS << ")\n };\n const unsigned Select = " << RC.getName()
<< "AltOrderSelect(MF);\n assert(Select < " << RC.getNumOrders()
<< ");\n return Order[Select];\n}\n";
}
}
// Now emit the actual value-initialized register class instances.
OS << "\nnamespace " << RegisterClasses.front().Namespace
<< " { // Register class instances\n";
for (const auto &RC : RegisterClasses) {
OS << " extern const TargetRegisterClass " << RC.getName()
<< "RegClass = {\n " << '&' << Target.getName()
<< "MCRegisterClasses[" << RC.getName() << "RegClassID],\n "
<< "VTLists + " << VTSeqs.get(RC.VTs) << ",\n " << RC.getName()
<< "SubClassMask,\n SuperRegIdxSeqs + "
<< SuperRegIdxSeqs.get(SuperRegIdxLists[RC.EnumValue]) << ",\n "
<< format("0x%08x,\n ", RC.LaneMask)
<< (unsigned)RC.AllocationPriority << ",\n "
<< (RC.HasDisjunctSubRegs?"true":"false")
<< ", /* HasDisjunctSubRegs */\n ";
if (RC.getSuperClasses().empty())
OS << "NullRegClasses,\n ";
else
OS << RC.getName() << "Superclasses,\n ";
if (RC.AltOrderSelect.empty())
OS << "nullptr\n";
else
OS << RC.getName() << "GetRawAllocationOrder\n";
OS << " };\n\n";
}
OS << "}\n";
}
OS << "\nnamespace {\n";
OS << " const TargetRegisterClass* const RegisterClasses[] = {\n";
for (const auto &RC : RegisterClasses)
OS << " &" << RC.getQualifiedName() << "RegClass,\n";
OS << " };\n";
OS << "}\n"; // End of anonymous namespace...
// Emit extra information about registers.
const std::string &TargetName = Target.getName();
OS << "\nstatic const TargetRegisterInfoDesc "
<< TargetName << "RegInfoDesc[] = { // Extra Descriptors\n";
OS << " { 0, 0 },\n";
const auto &Regs = RegBank.getRegisters();
for (const auto &Reg : Regs) {
OS << " { ";
OS << Reg.CostPerUse << ", "
<< int(AllocatableRegs.count(Reg.TheDef)) << " },\n";
}
OS << "};\n"; // End of register descriptors...
std::string ClassName = Target.getName() + "GenRegisterInfo";
auto SubRegIndicesSize =
std::distance(SubRegIndices.begin(), SubRegIndices.end());
if (!SubRegIndices.empty()) {
emitComposeSubRegIndices(OS, RegBank, ClassName);
emitComposeSubRegIndexLaneMask(OS, RegBank, ClassName);
}
// Emit getSubClassWithSubReg.
if (!SubRegIndices.empty()) {
OS << "const TargetRegisterClass *" << ClassName
<< "::getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx)"
<< " const {\n";
// Use the smallest type that can hold a regclass ID with room for a
// sentinel.
if (RegisterClasses.size() < UINT8_MAX)
OS << " static const uint8_t Table[";
else if (RegisterClasses.size() < UINT16_MAX)
OS << " static const uint16_t Table[";
else
PrintFatalError("Too many register classes.");
OS << RegisterClasses.size() << "][" << SubRegIndicesSize << "] = {\n";
for (const auto &RC : RegisterClasses) {
OS << " {\t// " << RC.getName() << "\n";
for (auto &Idx : SubRegIndices) {
if (CodeGenRegisterClass *SRC = RC.getSubClassWithSubReg(&Idx))
OS << " " << SRC->EnumValue + 1 << ",\t// " << Idx.getName()
<< " -> " << SRC->getName() << "\n";
else
OS << " 0,\t// " << Idx.getName() << "\n";
}
OS << " },\n";
}
OS << " };\n assert(RC && \"Missing regclass\");\n"
<< " if (!Idx) return RC;\n --Idx;\n"
<< " assert(Idx < " << SubRegIndicesSize << " && \"Bad subreg\");\n"
<< " unsigned TV = Table[RC->getID()][Idx];\n"
<< " return TV ? getRegClass(TV - 1) : nullptr;\n}\n\n";
}
EmitRegUnitPressure(OS, RegBank, ClassName);
// Emit the constructor of the class...
OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[];\n";
OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[];\n";
OS << "extern const unsigned " << TargetName << "LaneMaskLists[];\n";
OS << "extern const char " << TargetName << "RegStrings[];\n";
OS << "extern const char " << TargetName << "RegClassStrings[];\n";
OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2];\n";
OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[];\n";
OS << "extern const MCRegisterInfo::SubRegCoveredBits "
<< TargetName << "SubRegIdxRanges[];\n";
OS << "extern const uint16_t " << TargetName << "RegEncodingTable[];\n";
EmitRegMappingTables(OS, Regs, true);
OS << ClassName << "::\n" << ClassName
<< "(unsigned RA, unsigned DwarfFlavour, unsigned EHFlavour, unsigned PC)\n"
<< " : TargetRegisterInfo(" << TargetName << "RegInfoDesc"
<< ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() <<",\n"
<< " SubRegIndexNameTable, SubRegIndexLaneMaskTable, 0x";
OS.write_hex(RegBank.CoveringLanes);
OS << ") {\n"
<< " InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size() + 1
<< ", RA, PC,\n " << TargetName
<< "MCRegisterClasses, " << RegisterClasses.size() << ",\n"
<< " " << TargetName << "RegUnitRoots,\n"
<< " " << RegBank.getNumNativeRegUnits() << ",\n"
<< " " << TargetName << "RegDiffLists,\n"
<< " " << TargetName << "LaneMaskLists,\n"
<< " " << TargetName << "RegStrings,\n"
<< " " << TargetName << "RegClassStrings,\n"
<< " " << TargetName << "SubRegIdxLists,\n"
<< " " << SubRegIndicesSize + 1 << ",\n"
<< " " << TargetName << "SubRegIdxRanges,\n"
<< " " << TargetName << "RegEncodingTable);\n\n";
EmitRegMapping(OS, Regs, true);
OS << "}\n\n";
// Emit CalleeSavedRegs information.
std::vector<Record*> CSRSets =
Records.getAllDerivedDefinitions("CalleeSavedRegs");
for (unsigned i = 0, e = CSRSets.size(); i != e; ++i) {
Record *CSRSet = CSRSets[i];
const SetTheory::RecVec *Regs = RegBank.getSets().expand(CSRSet);
assert(Regs && "Cannot expand CalleeSavedRegs instance");
// Emit the *_SaveList list of callee-saved registers.
OS << "static const MCPhysReg " << CSRSet->getName()
<< "_SaveList[] = { ";
for (unsigned r = 0, re = Regs->size(); r != re; ++r)
OS << getQualifiedName((*Regs)[r]) << ", ";
OS << "0 };\n";
// Emit the *_RegMask bit mask of call-preserved registers.
BitVector Covered = RegBank.computeCoveredRegisters(*Regs);
// Check for an optional OtherPreserved set.
// Add those registers to RegMask, but not to SaveList.
if (DagInit *OPDag =
dyn_cast<DagInit>(CSRSet->getValueInit("OtherPreserved"))) {
SetTheory::RecSet OPSet;
RegBank.getSets().evaluate(OPDag, OPSet, CSRSet->getLoc());
Covered |= RegBank.computeCoveredRegisters(
ArrayRef<Record*>(OPSet.begin(), OPSet.end()));
}
OS << "static const uint32_t " << CSRSet->getName()
<< "_RegMask[] = { ";
printBitVectorAsHex(OS, Covered, 32);
OS << "};\n";
}
OS << "\n\n";
OS << "ArrayRef<const uint32_t *> " << ClassName
<< "::getRegMasks() const {\n";
if (!CSRSets.empty()) {
OS << " static const uint32_t *const Masks[] = {\n";
for (Record *CSRSet : CSRSets)
OS << " " << CSRSet->getName() << "_RegMask,\n";
OS << " };\n";
OS << " return makeArrayRef(Masks);\n";
} else {
OS << " return None;\n";
}
OS << "}\n\n";
OS << "ArrayRef<const char *> " << ClassName
<< "::getRegMaskNames() const {\n";
if (!CSRSets.empty()) {
OS << " static const char *const Names[] = {\n";
for (Record *CSRSet : CSRSets)
OS << " " << '"' << CSRSet->getName() << '"' << ",\n";
OS << " };\n";
OS << " return makeArrayRef(Names);\n";
} else {
OS << " return None;\n";
}
OS << "}\n\n";
OS << "const " << TargetName << "FrameLowering *\n" << TargetName
<< "GenRegisterInfo::getFrameLowering(const MachineFunction &MF) {\n"
<< " return static_cast<const " << TargetName << "FrameLowering *>(\n"
<< " MF.getSubtarget().getFrameLowering());\n"
<< "}\n\n";
OS << "} // End llvm namespace\n";
OS << "#endif // GET_REGINFO_TARGET_DESC\n\n";
}
void RegisterInfoEmitter::run(raw_ostream &OS) {
CodeGenTarget Target(Records);
CodeGenRegBank &RegBank = Target.getRegBank();
RegBank.computeDerivedInfo();
runEnums(OS, Target, RegBank);
runMCDesc(OS, Target, RegBank);
runTargetHeader(OS, Target, RegBank);
runTargetDesc(OS, Target, RegBank);
}
namespace llvm {
void EmitRegisterInfo(RecordKeeper &RK, raw_ostream &OS) {
RegisterInfoEmitter(RK).run(OS);
}
} // End llvm namespace