//===- RegisterInfoEmitter.cpp - Generate a Register File Desc. -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of a target // register file for a code generator. It uses instances of the Register, // RegisterAliases, and RegisterClass classes to gather this information. // //===----------------------------------------------------------------------===// #include "CodeGenRegisters.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Format.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <algorithm> #include <set> #include <vector> using namespace llvm; namespace { class RegisterInfoEmitter { RecordKeeper &Records; public: RegisterInfoEmitter(RecordKeeper &R) : Records(R) {} // runEnums - Print out enum values for all of the registers. void runEnums(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runMCDesc - Print out MC register descriptions. void runMCDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runTargetHeader - Emit a header fragment for the register info emitter. void runTargetHeader(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runTargetDesc - Output the target register and register file descriptions. void runTargetDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // run - Output the register file description. void run(raw_ostream &o); private: void EmitRegMapping(raw_ostream &o, const std::deque<CodeGenRegister> &Regs, bool isCtor); void EmitRegMappingTables(raw_ostream &o, const std::deque<CodeGenRegister> &Regs, bool isCtor); void EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank, const std::string &ClassName); void emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClassName); void emitComposeSubRegIndexLaneMask(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClassName); }; } // End anonymous namespace // runEnums - Print out enum values for all of the registers. void RegisterInfoEmitter::runEnums(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &Bank) { const auto &Registers = Bank.getRegisters(); // Register enums are stored as uint16_t in the tables. Make sure we'll fit. assert(Registers.size() <= 0xffff && "Too many regs to fit in tables"); std::string Namespace = Registers.front().TheDef->getValueAsString("Namespace"); emitSourceFileHeader("Target Register Enum Values", OS); OS << "\n#ifdef GET_REGINFO_ENUM\n"; OS << "#undef GET_REGINFO_ENUM\n"; OS << "namespace llvm {\n\n"; OS << "class MCRegisterClass;\n" << "extern const MCRegisterClass " << Namespace << "MCRegisterClasses[];\n\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoRegister,\n"; for (const auto &Reg : Registers) OS << " " << Reg.getName() << " = " << Reg.EnumValue << ",\n"; assert(Registers.size() == Registers.back().EnumValue && "Register enum value mismatch!"); OS << " NUM_TARGET_REGS \t// " << Registers.size()+1 << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "}\n"; const auto &RegisterClasses = Bank.getRegClasses(); if (!RegisterClasses.empty()) { // RegisterClass enums are stored as uint16_t in the tables. assert(RegisterClasses.size() <= 0xffff && "Too many register classes to fit in tables"); OS << "\n// Register classes\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n"; for (const auto &RC : RegisterClasses) OS << " " << RC.getName() << "RegClassID" << " = " << RC.EnumValue << ",\n"; OS << "\n };\n"; if (!Namespace.empty()) OS << "}\n"; } const std::vector<Record*> &RegAltNameIndices = Target.getRegAltNameIndices(); // If the only definition is the default NoRegAltName, we don't need to // emit anything. if (RegAltNameIndices.size() > 1) { OS << "\n// Register alternate name indices\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n"; for (unsigned i = 0, e = RegAltNameIndices.size(); i != e; ++i) OS << " " << RegAltNameIndices[i]->getName() << ",\t// " << i << "\n"; OS << " NUM_TARGET_REG_ALT_NAMES = " << RegAltNameIndices.size() << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "}\n"; } auto &SubRegIndices = Bank.getSubRegIndices(); if (!SubRegIndices.empty()) { OS << "\n// Subregister indices\n"; std::string Namespace = SubRegIndices.front().getNamespace(); if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoSubRegister,\n"; unsigned i = 0; for (const auto &Idx : SubRegIndices) OS << " " << Idx.getName() << ",\t// " << ++i << "\n"; OS << " NUM_TARGET_SUBREGS\n};\n"; if (!Namespace.empty()) OS << "}\n"; } OS << "} // End llvm namespace\n"; OS << "#endif // GET_REGINFO_ENUM\n\n"; } static void printInt(raw_ostream &OS, int Val) { OS << Val; } static const char *getMinimalTypeForRange(uint64_t Range) { assert(Range < 0xFFFFFFFFULL && "Enum too large"); if (Range > 0xFFFF) return "uint32_t"; if (Range > 0xFF) return "uint16_t"; return "uint8_t"; } void RegisterInfoEmitter:: EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank, const std::string &ClassName) { unsigned NumRCs = RegBank.getRegClasses().size(); unsigned NumSets = RegBank.getNumRegPressureSets(); OS << "/// Get the weight in units of pressure for this register class.\n" << "const RegClassWeight &" << ClassName << "::\n" << "getRegClassWeight(const TargetRegisterClass *RC) const {\n" << " static const RegClassWeight RCWeightTable[] = {\n"; for (const auto &RC : RegBank.getRegClasses()) { const CodeGenRegister::Vec &Regs = RC.getMembers(); if (Regs.empty()) OS << " {0, 0"; else { std::vector<unsigned> RegUnits; RC.buildRegUnitSet(RegUnits); OS << " {" << (*Regs.begin())->getWeight(RegBank) << ", " << RegBank.getRegUnitSetWeight(RegUnits); } OS << "}, \t// " << RC.getName() << "\n"; } OS << " };\n" << " return RCWeightTable[RC->getID()];\n" << "}\n\n"; // Reasonable targets (not ARMv7) have unit weight for all units, so don't // bother generating a table. bool RegUnitsHaveUnitWeight = true; for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); UnitIdx < UnitEnd; ++UnitIdx) { if (RegBank.getRegUnit(UnitIdx).Weight > 1) RegUnitsHaveUnitWeight = false; } OS << "/// Get the weight in units of pressure for this register unit.\n" << "unsigned " << ClassName << "::\n" << "getRegUnitWeight(unsigned RegUnit) const {\n" << " assert(RegUnit < " << RegBank.getNumNativeRegUnits() << " && \"invalid register unit\");\n"; if (!RegUnitsHaveUnitWeight) { OS << " static const uint8_t RUWeightTable[] = {\n "; for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); UnitIdx < UnitEnd; ++UnitIdx) { const RegUnit &RU = RegBank.getRegUnit(UnitIdx); assert(RU.Weight < 256 && "RegUnit too heavy"); OS << RU.Weight << ", "; } OS << "};\n" << " return RUWeightTable[RegUnit];\n"; } else { OS << " // All register units have unit weight.\n" << " return 1;\n"; } OS << "}\n\n"; OS << "\n" << "// Get the number of dimensions of register pressure.\n" << "unsigned " << ClassName << "::getNumRegPressureSets() const {\n" << " return " << NumSets << ";\n}\n\n"; OS << "// Get the name of this register unit pressure set.\n" << "const char *" << ClassName << "::\n" << "getRegPressureSetName(unsigned Idx) const {\n" << " static const char *const PressureNameTable[] = {\n"; unsigned MaxRegUnitWeight = 0; for (unsigned i = 0; i < NumSets; ++i ) { const RegUnitSet &RegUnits = RegBank.getRegSetAt(i); MaxRegUnitWeight = std::max(MaxRegUnitWeight, RegUnits.Weight); OS << " \"" << RegUnits.Name << "\",\n"; } OS << " };\n" << " return PressureNameTable[Idx];\n" << "}\n\n"; OS << "// Get the register unit pressure limit for this dimension.\n" << "// This limit must be adjusted dynamically for reserved registers.\n" << "unsigned " << ClassName << "::\n" << "getRegPressureSetLimit(const MachineFunction &MF, unsigned Idx) const {\n" << " static const " << getMinimalTypeForRange(MaxRegUnitWeight) << " PressureLimitTable[] = {\n"; for (unsigned i = 0; i < NumSets; ++i ) { const RegUnitSet &RegUnits = RegBank.getRegSetAt(i); OS << " " << RegUnits.Weight << ", \t// " << i << ": " << RegUnits.Name << "\n"; } OS << " };\n" << " return PressureLimitTable[Idx];\n" << "}\n\n"; SequenceToOffsetTable<std::vector<int>> PSetsSeqs; // This table may be larger than NumRCs if some register units needed a list // of unit sets that did not correspond to a register class. unsigned NumRCUnitSets = RegBank.getNumRegClassPressureSetLists(); std::vector<std::vector<int>> PSets(NumRCUnitSets); for (unsigned i = 0, e = NumRCUnitSets; i != e; ++i) { ArrayRef<unsigned> PSetIDs = RegBank.getRCPressureSetIDs(i); PSets[i].reserve(PSetIDs.size()); for (ArrayRef<unsigned>::iterator PSetI = PSetIDs.begin(), PSetE = PSetIDs.end(); PSetI != PSetE; ++PSetI) { PSets[i].push_back(RegBank.getRegPressureSet(*PSetI).Order); } std::sort(PSets[i].begin(), PSets[i].end()); PSetsSeqs.add(PSets[i]); } PSetsSeqs.layout(); OS << "/// Table of pressure sets per register class or unit.\n" << "static const int RCSetsTable[] = {\n"; PSetsSeqs.emit(OS, printInt, "-1"); OS << "};\n\n"; OS << "/// Get the dimensions of register pressure impacted by this " << "register class.\n" << "/// Returns a -1 terminated array of pressure set IDs\n" << "const int* " << ClassName << "::\n" << "getRegClassPressureSets(const TargetRegisterClass *RC) const {\n"; OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size()-1) << " RCSetStartTable[] = {\n "; for (unsigned i = 0, e = NumRCs; i != e; ++i) { OS << PSetsSeqs.get(PSets[i]) << ","; } OS << "};\n" << " return &RCSetsTable[RCSetStartTable[RC->getID()]];\n" << "}\n\n"; OS << "/// Get the dimensions of register pressure impacted by this " << "register unit.\n" << "/// Returns a -1 terminated array of pressure set IDs\n" << "const int* " << ClassName << "::\n" << "getRegUnitPressureSets(unsigned RegUnit) const {\n" << " assert(RegUnit < " << RegBank.getNumNativeRegUnits() << " && \"invalid register unit\");\n"; OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size()-1) << " RUSetStartTable[] = {\n "; for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); UnitIdx < UnitEnd; ++UnitIdx) { OS << PSetsSeqs.get(PSets[RegBank.getRegUnit(UnitIdx).RegClassUnitSetsIdx]) << ","; } OS << "};\n" << " return &RCSetsTable[RUSetStartTable[RegUnit]];\n" << "}\n\n"; } void RegisterInfoEmitter::EmitRegMappingTables( raw_ostream &OS, const std::deque<CodeGenRegister> &Regs, bool isCtor) { // Collect all information about dwarf register numbers typedef std::map<Record*, std::vector<int64_t>, LessRecordRegister> DwarfRegNumsMapTy; DwarfRegNumsMapTy DwarfRegNums; // First, just pull all provided information to the map unsigned maxLength = 0; for (auto &RE : Regs) { Record *Reg = RE.TheDef; std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers"); maxLength = std::max((size_t)maxLength, RegNums.size()); if (DwarfRegNums.count(Reg)) PrintWarning(Reg->getLoc(), Twine("DWARF numbers for register ") + getQualifiedName(Reg) + "specified multiple times"); DwarfRegNums[Reg] = RegNums; } if (!maxLength) return; // Now we know maximal length of number list. Append -1's, where needed for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) for (unsigned i = I->second.size(), e = maxLength; i != e; ++i) I->second.push_back(-1); std::string Namespace = Regs.front().TheDef->getValueAsString("Namespace"); OS << "// " << Namespace << " Dwarf<->LLVM register mappings.\n"; // Emit reverse information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace; OS << (j == 0 ? "DwarfFlavour" : "EHFlavour"); OS << i << "Dwarf2L[]"; if (!isCtor) { OS << " = {\n"; // Store the mapping sorted by the LLVM reg num so lookup can be done // with a binary search. std::map<uint64_t, Record*> Dwarf2LMap; for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) { int DwarfRegNo = I->second[i]; if (DwarfRegNo < 0) continue; Dwarf2LMap[DwarfRegNo] = I->first; } for (std::map<uint64_t, Record*>::iterator I = Dwarf2LMap.begin(), E = Dwarf2LMap.end(); I != E; ++I) OS << " { " << I->first << "U, " << getQualifiedName(I->second) << " },\n"; OS << "};\n"; } else { OS << ";\n"; } // We have to store the size in a const global, it's used in multiple // places. OS << "extern const unsigned " << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2LSize"; if (!isCtor) OS << " = array_lengthof(" << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2L);\n\n"; else OS << ";\n\n"; } } for (auto &RE : Regs) { Record *Reg = RE.TheDef; const RecordVal *V = Reg->getValue("DwarfAlias"); if (!V || !V->getValue()) continue; DefInit *DI = cast<DefInit>(V->getValue()); Record *Alias = DI->getDef(); DwarfRegNums[Reg] = DwarfRegNums[Alias]; } // Emit information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace; OS << (j == 0 ? "DwarfFlavour" : "EHFlavour"); OS << i << "L2Dwarf[]"; if (!isCtor) { OS << " = {\n"; // Store the mapping sorted by the Dwarf reg num so lookup can be done // with a binary search. for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) { int RegNo = I->second[i]; if (RegNo == -1) // -1 is the default value, don't emit a mapping. continue; OS << " { " << getQualifiedName(I->first) << ", " << RegNo << "U },\n"; } OS << "};\n"; } else { OS << ";\n"; } // We have to store the size in a const global, it's used in multiple // places. OS << "extern const unsigned " << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2DwarfSize"; if (!isCtor) OS << " = array_lengthof(" << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf);\n\n"; else OS << ";\n\n"; } } } void RegisterInfoEmitter::EmitRegMapping( raw_ostream &OS, const std::deque<CodeGenRegister> &Regs, bool isCtor) { // Emit the initializer so the tables from EmitRegMappingTables get wired up // to the MCRegisterInfo object. unsigned maxLength = 0; for (auto &RE : Regs) { Record *Reg = RE.TheDef; maxLength = std::max((size_t)maxLength, Reg->getValueAsListOfInts("DwarfNumbers").size()); } if (!maxLength) return; std::string Namespace = Regs.front().TheDef->getValueAsString("Namespace"); // Emit reverse information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { OS << " switch ("; if (j == 0) OS << "DwarfFlavour"; else OS << "EHFlavour"; OS << ") {\n" << " default:\n" << " llvm_unreachable(\"Unknown DWARF flavour\");\n"; for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << " case " << i << ":\n"; OS << " "; if (!isCtor) OS << "RI->"; std::string Tmp; raw_string_ostream(Tmp) << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2L"; OS << "mapDwarfRegsToLLVMRegs(" << Tmp << ", " << Tmp << "Size, "; if (j == 0) OS << "false"; else OS << "true"; OS << ");\n"; OS << " break;\n"; } OS << " }\n"; } // Emit information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { OS << " switch ("; if (j == 0) OS << "DwarfFlavour"; else OS << "EHFlavour"; OS << ") {\n" << " default:\n" << " llvm_unreachable(\"Unknown DWARF flavour\");\n"; for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << " case " << i << ":\n"; OS << " "; if (!isCtor) OS << "RI->"; std::string Tmp; raw_string_ostream(Tmp) << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf"; OS << "mapLLVMRegsToDwarfRegs(" << Tmp << ", " << Tmp << "Size, "; if (j == 0) OS << "false"; else OS << "true"; OS << ");\n"; OS << " break;\n"; } OS << " }\n"; } } // Print a BitVector as a sequence of hex numbers using a little-endian mapping. // Width is the number of bits per hex number. static void printBitVectorAsHex(raw_ostream &OS, const BitVector &Bits, unsigned Width) { assert(Width <= 32 && "Width too large"); unsigned Digits = (Width + 3) / 4; for (unsigned i = 0, e = Bits.size(); i < e; i += Width) { unsigned Value = 0; for (unsigned j = 0; j != Width && i + j != e; ++j) Value |= Bits.test(i + j) << j; OS << format("0x%0*x, ", Digits, Value); } } // Helper to emit a set of bits into a constant byte array. class BitVectorEmitter { BitVector Values; public: void add(unsigned v) { if (v >= Values.size()) Values.resize(((v/8)+1)*8); // Round up to the next byte. Values[v] = true; } void print(raw_ostream &OS) { printBitVectorAsHex(OS, Values, 8); } }; static void printSimpleValueType(raw_ostream &OS, MVT::SimpleValueType VT) { OS << getEnumName(VT); } static void printSubRegIndex(raw_ostream &OS, const CodeGenSubRegIndex *Idx) { OS << Idx->EnumValue; } // Differentially encoded register and regunit lists allow for better // compression on regular register banks. The sequence is computed from the // differential list as: // // out[0] = InitVal; // out[n+1] = out[n] + diff[n]; // n = 0, 1, ... // // The initial value depends on the specific list. The list is terminated by a // 0 differential which means we can't encode repeated elements. typedef SmallVector<uint16_t, 4> DiffVec; typedef SmallVector<unsigned, 4> MaskVec; // Differentially encode a sequence of numbers into V. The starting value and // terminating 0 are not added to V, so it will have the same size as List. static DiffVec &diffEncode(DiffVec &V, unsigned InitVal, SparseBitVector<> List) { assert(V.empty() && "Clear DiffVec before diffEncode."); uint16_t Val = uint16_t(InitVal); for (uint16_t Cur : List) { V.push_back(Cur - Val); Val = Cur; } return V; } template<typename Iter> static DiffVec &diffEncode(DiffVec &V, unsigned InitVal, Iter Begin, Iter End) { assert(V.empty() && "Clear DiffVec before diffEncode."); uint16_t Val = uint16_t(InitVal); for (Iter I = Begin; I != End; ++I) { uint16_t Cur = (*I)->EnumValue; V.push_back(Cur - Val); Val = Cur; } return V; } static void printDiff16(raw_ostream &OS, uint16_t Val) { OS << Val; } static void printMask(raw_ostream &OS, unsigned Val) { OS << format("0x%08X", Val); } // Try to combine Idx's compose map into Vec if it is compatible. // Return false if it's not possible. static bool combine(const CodeGenSubRegIndex *Idx, SmallVectorImpl<CodeGenSubRegIndex*> &Vec) { const CodeGenSubRegIndex::CompMap &Map = Idx->getComposites(); for (const auto &I : Map) { CodeGenSubRegIndex *&Entry = Vec[I.first->EnumValue - 1]; if (Entry && Entry != I.second) return false; } // All entries are compatible. Make it so. for (const auto &I : Map) { auto *&Entry = Vec[I.first->EnumValue - 1]; assert((!Entry || Entry == I.second) && "Expected EnumValue to be unique"); Entry = I.second; } return true; } void RegisterInfoEmitter::emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClName) { const auto &SubRegIndices = RegBank.getSubRegIndices(); OS << "unsigned " << ClName << "::composeSubRegIndicesImpl(unsigned IdxA, unsigned IdxB) const {\n"; // Many sub-register indexes are composition-compatible, meaning that // // compose(IdxA, IdxB) == compose(IdxA', IdxB) // // for many IdxA, IdxA' pairs. Not all sub-register indexes can be composed. // The illegal entries can be use as wildcards to compress the table further. // Map each Sub-register index to a compatible table row. SmallVector<unsigned, 4> RowMap; SmallVector<SmallVector<CodeGenSubRegIndex*, 4>, 4> Rows; auto SubRegIndicesSize = std::distance(SubRegIndices.begin(), SubRegIndices.end()); for (const auto &Idx : SubRegIndices) { unsigned Found = ~0u; for (unsigned r = 0, re = Rows.size(); r != re; ++r) { if (combine(&Idx, Rows[r])) { Found = r; break; } } if (Found == ~0u) { Found = Rows.size(); Rows.resize(Found + 1); Rows.back().resize(SubRegIndicesSize); combine(&Idx, Rows.back()); } RowMap.push_back(Found); } // Output the row map if there is multiple rows. if (Rows.size() > 1) { OS << " static const " << getMinimalTypeForRange(Rows.size()) << " RowMap[" << SubRegIndicesSize << "] = {\n "; for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i) OS << RowMap[i] << ", "; OS << "\n };\n"; } // Output the rows. OS << " static const " << getMinimalTypeForRange(SubRegIndicesSize + 1) << " Rows[" << Rows.size() << "][" << SubRegIndicesSize << "] = {\n"; for (unsigned r = 0, re = Rows.size(); r != re; ++r) { OS << " { "; for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i) if (Rows[r][i]) OS << Rows[r][i]->EnumValue << ", "; else OS << "0, "; OS << "},\n"; } OS << " };\n\n"; OS << " --IdxA; assert(IdxA < " << SubRegIndicesSize << ");\n" << " --IdxB; assert(IdxB < " << SubRegIndicesSize << ");\n"; if (Rows.size() > 1) OS << " return Rows[RowMap[IdxA]][IdxB];\n"; else OS << " return Rows[0][IdxB];\n"; OS << "}\n\n"; } void RegisterInfoEmitter::emitComposeSubRegIndexLaneMask(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClName) { // See the comments in computeSubRegLaneMasks() for our goal here. const auto &SubRegIndices = RegBank.getSubRegIndices(); // Create a list of Mask+Rotate operations, with equivalent entries merged. SmallVector<unsigned, 4> SubReg2SequenceIndexMap; SmallVector<SmallVector<MaskRolPair, 1>, 4> Sequences; for (const auto &Idx : SubRegIndices) { const SmallVector<MaskRolPair, 1> &IdxSequence = Idx.CompositionLaneMaskTransform; unsigned Found = ~0u; unsigned SIdx = 0; unsigned NextSIdx; for (size_t s = 0, se = Sequences.size(); s != se; ++s, SIdx = NextSIdx) { SmallVectorImpl<MaskRolPair> &Sequence = Sequences[s]; NextSIdx = SIdx + Sequence.size() + 1; if (Sequence == IdxSequence) { Found = SIdx; break; } } if (Found == ~0u) { Sequences.push_back(IdxSequence); Found = SIdx; } SubReg2SequenceIndexMap.push_back(Found); } OS << "unsigned " << ClName << "::composeSubRegIndexLaneMaskImpl(unsigned IdxA, unsigned LaneMask)" " const {\n"; OS << " struct MaskRolOp {\n" " unsigned Mask;\n" " uint8_t RotateLeft;\n" " };\n" " static const MaskRolOp Seqs[] = {\n"; unsigned Idx = 0; for (size_t s = 0, se = Sequences.size(); s != se; ++s) { OS << " "; const SmallVectorImpl<MaskRolPair> &Sequence = Sequences[s]; for (size_t p = 0, pe = Sequence.size(); p != pe; ++p) { const MaskRolPair &P = Sequence[p]; OS << format("{ 0x%08X, %2u }, ", P.Mask, P.RotateLeft); } OS << "{ 0, 0 }"; if (s+1 != se) OS << ", "; OS << " // Sequence " << Idx << "\n"; Idx += Sequence.size() + 1; } OS << " };\n" " static const MaskRolOp *const CompositeSequences[] = {\n"; for (size_t i = 0, e = SubRegIndices.size(); i != e; ++i) { OS << " "; unsigned Idx = SubReg2SequenceIndexMap[i]; OS << format("&Seqs[%u]", Idx); if (i+1 != e) OS << ","; OS << " // to " << SubRegIndices[i].getName() << "\n"; } OS << " };\n\n"; OS << " --IdxA; assert(IdxA < " << SubRegIndices.size() << " && \"Subregister index out of bounds\");\n" " unsigned Result = 0;\n" " for (const MaskRolOp *Ops = CompositeSequences[IdxA]; Ops->Mask != 0; ++Ops)" " {\n" " unsigned Masked = LaneMask & Ops->Mask;\n" " Result |= (Masked << Ops->RotateLeft) & 0xFFFFFFFF;\n" " Result |= (Masked >> ((32 - Ops->RotateLeft) & 0x1F));\n" " }\n" " return Result;\n" "}\n"; } // // runMCDesc - Print out MC register descriptions. // void RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { emitSourceFileHeader("MC Register Information", OS); OS << "\n#ifdef GET_REGINFO_MC_DESC\n"; OS << "#undef GET_REGINFO_MC_DESC\n"; const auto &Regs = RegBank.getRegisters(); auto &SubRegIndices = RegBank.getSubRegIndices(); // The lists of sub-registers and super-registers go in the same array. That // allows us to share suffixes. typedef std::vector<const CodeGenRegister*> RegVec; // Differentially encoded lists. SequenceToOffsetTable<DiffVec> DiffSeqs; SmallVector<DiffVec, 4> SubRegLists(Regs.size()); SmallVector<DiffVec, 4> SuperRegLists(Regs.size()); SmallVector<DiffVec, 4> RegUnitLists(Regs.size()); SmallVector<unsigned, 4> RegUnitInitScale(Regs.size()); // List of lane masks accompanying register unit sequences. SequenceToOffsetTable<MaskVec> LaneMaskSeqs; SmallVector<MaskVec, 4> RegUnitLaneMasks(Regs.size()); // Keep track of sub-register names as well. These are not differentially // encoded. typedef SmallVector<const CodeGenSubRegIndex*, 4> SubRegIdxVec; SequenceToOffsetTable<SubRegIdxVec, deref<llvm::less>> SubRegIdxSeqs; SmallVector<SubRegIdxVec, 4> SubRegIdxLists(Regs.size()); SequenceToOffsetTable<std::string> RegStrings; // Precompute register lists for the SequenceToOffsetTable. unsigned i = 0; for (auto I = Regs.begin(), E = Regs.end(); I != E; ++I, ++i) { const auto &Reg = *I; RegStrings.add(Reg.getName()); // Compute the ordered sub-register list. SetVector<const CodeGenRegister*> SR; Reg.addSubRegsPreOrder(SR, RegBank); diffEncode(SubRegLists[i], Reg.EnumValue, SR.begin(), SR.end()); DiffSeqs.add(SubRegLists[i]); // Compute the corresponding sub-register indexes. SubRegIdxVec &SRIs = SubRegIdxLists[i]; for (unsigned j = 0, je = SR.size(); j != je; ++j) SRIs.push_back(Reg.getSubRegIndex(SR[j])); SubRegIdxSeqs.add(SRIs); // Super-registers are already computed. const RegVec &SuperRegList = Reg.getSuperRegs(); diffEncode(SuperRegLists[i], Reg.EnumValue, SuperRegList.begin(), SuperRegList.end()); DiffSeqs.add(SuperRegLists[i]); // Differentially encode the register unit list, seeded by register number. // First compute a scale factor that allows more diff-lists to be reused: // // D0 -> (S0, S1) // D1 -> (S2, S3) // // A scale factor of 2 allows D0 and D1 to share a diff-list. The initial // value for the differential decoder is the register number multiplied by // the scale. // // Check the neighboring registers for arithmetic progressions. unsigned ScaleA = ~0u, ScaleB = ~0u; SparseBitVector<> RUs = Reg.getNativeRegUnits(); if (I != Regs.begin() && std::prev(I)->getNativeRegUnits().count() == RUs.count()) ScaleB = *RUs.begin() - *std::prev(I)->getNativeRegUnits().begin(); if (std::next(I) != Regs.end() && std::next(I)->getNativeRegUnits().count() == RUs.count()) ScaleA = *std::next(I)->getNativeRegUnits().begin() - *RUs.begin(); unsigned Scale = std::min(ScaleB, ScaleA); // Default the scale to 0 if it can't be encoded in 4 bits. if (Scale >= 16) Scale = 0; RegUnitInitScale[i] = Scale; DiffSeqs.add(diffEncode(RegUnitLists[i], Scale * Reg.EnumValue, RUs)); const auto &RUMasks = Reg.getRegUnitLaneMasks(); MaskVec &LaneMaskVec = RegUnitLaneMasks[i]; assert(LaneMaskVec.empty()); LaneMaskVec.insert(LaneMaskVec.begin(), RUMasks.begin(), RUMasks.end()); // Terminator mask should not be used inside of the list. #ifndef NDEBUG for (unsigned M : LaneMaskVec) { assert(M != ~0u && "terminator mask should not be part of the list"); } #endif LaneMaskSeqs.add(LaneMaskVec); } // Compute the final layout of the sequence table. DiffSeqs.layout(); LaneMaskSeqs.layout(); SubRegIdxSeqs.layout(); OS << "namespace llvm {\n\n"; const std::string &TargetName = Target.getName(); // Emit the shared table of differential lists. OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[] = {\n"; DiffSeqs.emit(OS, printDiff16); OS << "};\n\n"; // Emit the shared table of regunit lane mask sequences. OS << "extern const unsigned " << TargetName << "LaneMaskLists[] = {\n"; LaneMaskSeqs.emit(OS, printMask, "~0u"); OS << "};\n\n"; // Emit the table of sub-register indexes. OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[] = {\n"; SubRegIdxSeqs.emit(OS, printSubRegIndex); OS << "};\n\n"; // Emit the table of sub-register index sizes. OS << "extern const MCRegisterInfo::SubRegCoveredBits " << TargetName << "SubRegIdxRanges[] = {\n"; OS << " { " << (uint16_t)-1 << ", " << (uint16_t)-1 << " },\n"; for (const auto &Idx : SubRegIndices) { OS << " { " << Idx.Offset << ", " << Idx.Size << " },\t// " << Idx.getName() << "\n"; } OS << "};\n\n"; // Emit the string table. RegStrings.layout(); OS << "extern const char " << TargetName << "RegStrings[] = {\n"; RegStrings.emit(OS, printChar); OS << "};\n\n"; OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[] = { // Descriptors\n"; OS << " { " << RegStrings.get("") << ", 0, 0, 0, 0, 0 },\n"; // Emit the register descriptors now. i = 0; for (const auto &Reg : Regs) { OS << " { " << RegStrings.get(Reg.getName()) << ", " << DiffSeqs.get(SubRegLists[i]) << ", " << DiffSeqs.get(SuperRegLists[i]) << ", " << SubRegIdxSeqs.get(SubRegIdxLists[i]) << ", " << (DiffSeqs.get(RegUnitLists[i]) * 16 + RegUnitInitScale[i]) << ", " << LaneMaskSeqs.get(RegUnitLaneMasks[i]) << " },\n"; ++i; } OS << "};\n\n"; // End of register descriptors... // Emit the table of register unit roots. Each regunit has one or two root // registers. OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2] = {\n"; for (unsigned i = 0, e = RegBank.getNumNativeRegUnits(); i != e; ++i) { ArrayRef<const CodeGenRegister*> Roots = RegBank.getRegUnit(i).getRoots(); assert(!Roots.empty() && "All regunits must have a root register."); assert(Roots.size() <= 2 && "More than two roots not supported yet."); OS << " { " << getQualifiedName(Roots.front()->TheDef); for (unsigned r = 1; r != Roots.size(); ++r) OS << ", " << getQualifiedName(Roots[r]->TheDef); OS << " },\n"; } OS << "};\n\n"; const auto &RegisterClasses = RegBank.getRegClasses(); // Loop over all of the register classes... emitting each one. OS << "namespace { // Register classes...\n"; SequenceToOffsetTable<std::string> RegClassStrings; // Emit the register enum value arrays for each RegisterClass for (const auto &RC : RegisterClasses) { ArrayRef<Record*> Order = RC.getOrder(); // Give the register class a legal C name if it's anonymous. std::string Name = RC.getName(); RegClassStrings.add(Name); // Emit the register list now. OS << " // " << Name << " Register Class...\n" << " const MCPhysReg " << Name << "[] = {\n "; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; OS << getQualifiedName(Reg) << ", "; } OS << "\n };\n\n"; OS << " // " << Name << " Bit set.\n" << " const uint8_t " << Name << "Bits[] = {\n "; BitVectorEmitter BVE; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; BVE.add(Target.getRegBank().getReg(Reg)->EnumValue); } BVE.print(OS); OS << "\n };\n\n"; } OS << "}\n\n"; RegClassStrings.layout(); OS << "extern const char " << TargetName << "RegClassStrings[] = {\n"; RegClassStrings.emit(OS, printChar); OS << "};\n\n"; OS << "extern const MCRegisterClass " << TargetName << "MCRegisterClasses[] = {\n"; for (const auto &RC : RegisterClasses) { // Asserts to make sure values will fit in table assuming types from // MCRegisterInfo.h assert((RC.SpillSize/8) <= 0xffff && "SpillSize too large."); assert((RC.SpillAlignment/8) <= 0xffff && "SpillAlignment too large."); assert(RC.CopyCost >= -128 && RC.CopyCost <= 127 && "Copy cost too large."); OS << " { " << RC.getName() << ", " << RC.getName() << "Bits, " << RegClassStrings.get(RC.getName()) << ", " << RC.getOrder().size() << ", sizeof(" << RC.getName() << "Bits), " << RC.getQualifiedName() + "RegClassID" << ", " << RC.SpillSize/8 << ", " << RC.SpillAlignment/8 << ", " << RC.CopyCost << ", " << RC.Allocatable << " },\n"; } OS << "};\n\n"; EmitRegMappingTables(OS, Regs, false); // Emit Reg encoding table OS << "extern const uint16_t " << TargetName; OS << "RegEncodingTable[] = {\n"; // Add entry for NoRegister OS << " 0,\n"; for (const auto &RE : Regs) { Record *Reg = RE.TheDef; BitsInit *BI = Reg->getValueAsBitsInit("HWEncoding"); uint64_t Value = 0; for (unsigned b = 0, be = BI->getNumBits(); b != be; ++b) { if (BitInit *B = dyn_cast<BitInit>(BI->getBit(b))) Value |= (uint64_t)B->getValue() << b; } OS << " " << Value << ",\n"; } OS << "};\n"; // End of HW encoding table // MCRegisterInfo initialization routine. OS << "static inline void Init" << TargetName << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, " << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0, unsigned PC = 0) " "{\n" << " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size() + 1 << ", RA, PC, " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ", " << TargetName << "RegUnitRoots, " << RegBank.getNumNativeRegUnits() << ", " << TargetName << "RegDiffLists, " << TargetName << "LaneMaskLists, " << TargetName << "RegStrings, " << TargetName << "RegClassStrings, " << TargetName << "SubRegIdxLists, " << (std::distance(SubRegIndices.begin(), SubRegIndices.end()) + 1) << ",\n" << TargetName << "SubRegIdxRanges, " << TargetName << "RegEncodingTable);\n\n"; EmitRegMapping(OS, Regs, false); OS << "}\n\n"; OS << "} // End llvm namespace\n"; OS << "#endif // GET_REGINFO_MC_DESC\n\n"; } void RegisterInfoEmitter::runTargetHeader(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { emitSourceFileHeader("Register Information Header Fragment", OS); OS << "\n#ifdef GET_REGINFO_HEADER\n"; OS << "#undef GET_REGINFO_HEADER\n"; const std::string &TargetName = Target.getName(); std::string ClassName = TargetName + "GenRegisterInfo"; OS << "#include \"llvm/Target/TargetRegisterInfo.h\"\n\n"; OS << "namespace llvm {\n\n"; OS << "class " << TargetName << "FrameLowering;\n\n"; OS << "struct " << ClassName << " : public TargetRegisterInfo {\n" << " explicit " << ClassName << "(unsigned RA, unsigned D = 0, unsigned E = 0, unsigned PC = 0);\n"; if (!RegBank.getSubRegIndices().empty()) { OS << " unsigned composeSubRegIndicesImpl" << "(unsigned, unsigned) const override;\n" << " unsigned composeSubRegIndexLaneMaskImpl" << "(unsigned, unsigned) const override;\n" << " const TargetRegisterClass *getSubClassWithSubReg" << "(const TargetRegisterClass*, unsigned) const override;\n"; } OS << " const RegClassWeight &getRegClassWeight(" << "const TargetRegisterClass *RC) const override;\n" << " unsigned getRegUnitWeight(unsigned RegUnit) const override;\n" << " unsigned getNumRegPressureSets() const override;\n" << " const char *getRegPressureSetName(unsigned Idx) const override;\n" << " unsigned getRegPressureSetLimit(const MachineFunction &MF, unsigned " "Idx) const override;\n" << " const int *getRegClassPressureSets(" << "const TargetRegisterClass *RC) const override;\n" << " const int *getRegUnitPressureSets(" << "unsigned RegUnit) const override;\n" << " ArrayRef<const char *> getRegMaskNames() const override;\n" << " ArrayRef<const uint32_t *> getRegMasks() const override;\n" << " /// Devirtualized TargetFrameLowering.\n" << " static const " << TargetName << "FrameLowering *getFrameLowering(\n" << " const MachineFunction &MF);\n" << "};\n\n"; const auto &RegisterClasses = RegBank.getRegClasses(); if (!RegisterClasses.empty()) { OS << "namespace " << RegisterClasses.front().Namespace << " { // Register classes\n"; for (const auto &RC : RegisterClasses) { const std::string &Name = RC.getName(); // Output the extern for the instance. OS << " extern const TargetRegisterClass " << Name << "RegClass;\n"; } OS << "} // end of namespace " << TargetName << "\n\n"; } OS << "} // End llvm namespace\n"; OS << "#endif // GET_REGINFO_HEADER\n\n"; } // // runTargetDesc - Output the target register and register file descriptions. // void RegisterInfoEmitter::runTargetDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank){ emitSourceFileHeader("Target Register and Register Classes Information", OS); OS << "\n#ifdef GET_REGINFO_TARGET_DESC\n"; OS << "#undef GET_REGINFO_TARGET_DESC\n"; OS << "namespace llvm {\n\n"; // Get access to MCRegisterClass data. OS << "extern const MCRegisterClass " << Target.getName() << "MCRegisterClasses[];\n"; // Start out by emitting each of the register classes. const auto &RegisterClasses = RegBank.getRegClasses(); const auto &SubRegIndices = RegBank.getSubRegIndices(); // Collect all registers belonging to any allocatable class. std::set<Record*> AllocatableRegs; // Collect allocatable registers. for (const auto &RC : RegisterClasses) { ArrayRef<Record*> Order = RC.getOrder(); if (RC.Allocatable) AllocatableRegs.insert(Order.begin(), Order.end()); } // Build a shared array of value types. SequenceToOffsetTable<SmallVector<MVT::SimpleValueType, 4> > VTSeqs; for (const auto &RC : RegisterClasses) VTSeqs.add(RC.VTs); VTSeqs.layout(); OS << "\nstatic const MVT::SimpleValueType VTLists[] = {\n"; VTSeqs.emit(OS, printSimpleValueType, "MVT::Other"); OS << "};\n"; // Emit SubRegIndex names, skipping 0. OS << "\nstatic const char *const SubRegIndexNameTable[] = { \""; for (const auto &Idx : SubRegIndices) { OS << Idx.getName(); OS << "\", \""; } OS << "\" };\n\n"; // Emit SubRegIndex lane masks, including 0. OS << "\nstatic const unsigned SubRegIndexLaneMaskTable[] = {\n ~0u,\n"; for (const auto &Idx : SubRegIndices) { OS << format(" 0x%08x, // ", Idx.LaneMask) << Idx.getName() << '\n'; } OS << " };\n\n"; OS << "\n"; // Now that all of the structs have been emitted, emit the instances. if (!RegisterClasses.empty()) { OS << "\nstatic const TargetRegisterClass *const " << "NullRegClasses[] = { nullptr };\n\n"; // Emit register class bit mask tables. The first bit mask emitted for a // register class, RC, is the set of sub-classes, including RC itself. // // If RC has super-registers, also create a list of subreg indices and bit // masks, (Idx, Mask). The bit mask has a bit for every superreg regclass, // SuperRC, that satisfies: // // For all SuperReg in SuperRC: SuperReg:Idx in RC // // The 0-terminated list of subreg indices starts at: // // RC->getSuperRegIndices() = SuperRegIdxSeqs + ... // // The corresponding bitmasks follow the sub-class mask in memory. Each // mask has RCMaskWords uint32_t entries. // // Every bit mask present in the list has at least one bit set. // Compress the sub-reg index lists. typedef std::vector<const CodeGenSubRegIndex*> IdxList; SmallVector<IdxList, 8> SuperRegIdxLists(RegisterClasses.size()); SequenceToOffsetTable<IdxList, deref<llvm::less>> SuperRegIdxSeqs; BitVector MaskBV(RegisterClasses.size()); for (const auto &RC : RegisterClasses) { OS << "static const uint32_t " << RC.getName() << "SubClassMask[] = {\n "; printBitVectorAsHex(OS, RC.getSubClasses(), 32); // Emit super-reg class masks for any relevant SubRegIndices that can // project into RC. IdxList &SRIList = SuperRegIdxLists[RC.EnumValue]; for (auto &Idx : SubRegIndices) { MaskBV.reset(); RC.getSuperRegClasses(&Idx, MaskBV); if (MaskBV.none()) continue; SRIList.push_back(&Idx); OS << "\n "; printBitVectorAsHex(OS, MaskBV, 32); OS << "// " << Idx.getName(); } SuperRegIdxSeqs.add(SRIList); OS << "\n};\n\n"; } OS << "static const uint16_t SuperRegIdxSeqs[] = {\n"; SuperRegIdxSeqs.layout(); SuperRegIdxSeqs.emit(OS, printSubRegIndex); OS << "};\n\n"; // Emit NULL terminated super-class lists. for (const auto &RC : RegisterClasses) { ArrayRef<CodeGenRegisterClass*> Supers = RC.getSuperClasses(); // Skip classes without supers. We can reuse NullRegClasses. if (Supers.empty()) continue; OS << "static const TargetRegisterClass *const " << RC.getName() << "Superclasses[] = {\n"; for (const auto *Super : Supers) OS << " &" << Super->getQualifiedName() << "RegClass,\n"; OS << " nullptr\n};\n\n"; } // Emit methods. for (const auto &RC : RegisterClasses) { if (!RC.AltOrderSelect.empty()) { OS << "\nstatic inline unsigned " << RC.getName() << "AltOrderSelect(const MachineFunction &MF) {" << RC.AltOrderSelect << "}\n\n" << "static ArrayRef<MCPhysReg> " << RC.getName() << "GetRawAllocationOrder(const MachineFunction &MF) {\n"; for (unsigned oi = 1 , oe = RC.getNumOrders(); oi != oe; ++oi) { ArrayRef<Record*> Elems = RC.getOrder(oi); if (!Elems.empty()) { OS << " static const MCPhysReg AltOrder" << oi << "[] = {"; for (unsigned elem = 0; elem != Elems.size(); ++elem) OS << (elem ? ", " : " ") << getQualifiedName(Elems[elem]); OS << " };\n"; } } OS << " const MCRegisterClass &MCR = " << Target.getName() << "MCRegisterClasses[" << RC.getQualifiedName() + "RegClassID];\n" << " const ArrayRef<MCPhysReg> Order[] = {\n" << " makeArrayRef(MCR.begin(), MCR.getNumRegs()"; for (unsigned oi = 1, oe = RC.getNumOrders(); oi != oe; ++oi) if (RC.getOrder(oi).empty()) OS << "),\n ArrayRef<MCPhysReg>("; else OS << "),\n makeArrayRef(AltOrder" << oi; OS << ")\n };\n const unsigned Select = " << RC.getName() << "AltOrderSelect(MF);\n assert(Select < " << RC.getNumOrders() << ");\n return Order[Select];\n}\n"; } } // Now emit the actual value-initialized register class instances. OS << "\nnamespace " << RegisterClasses.front().Namespace << " { // Register class instances\n"; for (const auto &RC : RegisterClasses) { OS << " extern const TargetRegisterClass " << RC.getName() << "RegClass = {\n " << '&' << Target.getName() << "MCRegisterClasses[" << RC.getName() << "RegClassID],\n " << "VTLists + " << VTSeqs.get(RC.VTs) << ",\n " << RC.getName() << "SubClassMask,\n SuperRegIdxSeqs + " << SuperRegIdxSeqs.get(SuperRegIdxLists[RC.EnumValue]) << ",\n " << format("0x%08x,\n ", RC.LaneMask) << (unsigned)RC.AllocationPriority << ",\n " << (RC.HasDisjunctSubRegs?"true":"false") << ", /* HasDisjunctSubRegs */\n "; if (RC.getSuperClasses().empty()) OS << "NullRegClasses,\n "; else OS << RC.getName() << "Superclasses,\n "; if (RC.AltOrderSelect.empty()) OS << "nullptr\n"; else OS << RC.getName() << "GetRawAllocationOrder\n"; OS << " };\n\n"; } OS << "}\n"; } OS << "\nnamespace {\n"; OS << " const TargetRegisterClass* const RegisterClasses[] = {\n"; for (const auto &RC : RegisterClasses) OS << " &" << RC.getQualifiedName() << "RegClass,\n"; OS << " };\n"; OS << "}\n"; // End of anonymous namespace... // Emit extra information about registers. const std::string &TargetName = Target.getName(); OS << "\nstatic const TargetRegisterInfoDesc " << TargetName << "RegInfoDesc[] = { // Extra Descriptors\n"; OS << " { 0, 0 },\n"; const auto &Regs = RegBank.getRegisters(); for (const auto &Reg : Regs) { OS << " { "; OS << Reg.CostPerUse << ", " << int(AllocatableRegs.count(Reg.TheDef)) << " },\n"; } OS << "};\n"; // End of register descriptors... std::string ClassName = Target.getName() + "GenRegisterInfo"; auto SubRegIndicesSize = std::distance(SubRegIndices.begin(), SubRegIndices.end()); if (!SubRegIndices.empty()) { emitComposeSubRegIndices(OS, RegBank, ClassName); emitComposeSubRegIndexLaneMask(OS, RegBank, ClassName); } // Emit getSubClassWithSubReg. if (!SubRegIndices.empty()) { OS << "const TargetRegisterClass *" << ClassName << "::getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx)" << " const {\n"; // Use the smallest type that can hold a regclass ID with room for a // sentinel. if (RegisterClasses.size() < UINT8_MAX) OS << " static const uint8_t Table["; else if (RegisterClasses.size() < UINT16_MAX) OS << " static const uint16_t Table["; else PrintFatalError("Too many register classes."); OS << RegisterClasses.size() << "][" << SubRegIndicesSize << "] = {\n"; for (const auto &RC : RegisterClasses) { OS << " {\t// " << RC.getName() << "\n"; for (auto &Idx : SubRegIndices) { if (CodeGenRegisterClass *SRC = RC.getSubClassWithSubReg(&Idx)) OS << " " << SRC->EnumValue + 1 << ",\t// " << Idx.getName() << " -> " << SRC->getName() << "\n"; else OS << " 0,\t// " << Idx.getName() << "\n"; } OS << " },\n"; } OS << " };\n assert(RC && \"Missing regclass\");\n" << " if (!Idx) return RC;\n --Idx;\n" << " assert(Idx < " << SubRegIndicesSize << " && \"Bad subreg\");\n" << " unsigned TV = Table[RC->getID()][Idx];\n" << " return TV ? getRegClass(TV - 1) : nullptr;\n}\n\n"; } EmitRegUnitPressure(OS, RegBank, ClassName); // Emit the constructor of the class... OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[];\n"; OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[];\n"; OS << "extern const unsigned " << TargetName << "LaneMaskLists[];\n"; OS << "extern const char " << TargetName << "RegStrings[];\n"; OS << "extern const char " << TargetName << "RegClassStrings[];\n"; OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2];\n"; OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[];\n"; OS << "extern const MCRegisterInfo::SubRegCoveredBits " << TargetName << "SubRegIdxRanges[];\n"; OS << "extern const uint16_t " << TargetName << "RegEncodingTable[];\n"; EmitRegMappingTables(OS, Regs, true); OS << ClassName << "::\n" << ClassName << "(unsigned RA, unsigned DwarfFlavour, unsigned EHFlavour, unsigned PC)\n" << " : TargetRegisterInfo(" << TargetName << "RegInfoDesc" << ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() <<",\n" << " SubRegIndexNameTable, SubRegIndexLaneMaskTable, 0x"; OS.write_hex(RegBank.CoveringLanes); OS << ") {\n" << " InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size() + 1 << ", RA, PC,\n " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ",\n" << " " << TargetName << "RegUnitRoots,\n" << " " << RegBank.getNumNativeRegUnits() << ",\n" << " " << TargetName << "RegDiffLists,\n" << " " << TargetName << "LaneMaskLists,\n" << " " << TargetName << "RegStrings,\n" << " " << TargetName << "RegClassStrings,\n" << " " << TargetName << "SubRegIdxLists,\n" << " " << SubRegIndicesSize + 1 << ",\n" << " " << TargetName << "SubRegIdxRanges,\n" << " " << TargetName << "RegEncodingTable);\n\n"; EmitRegMapping(OS, Regs, true); OS << "}\n\n"; // Emit CalleeSavedRegs information. std::vector<Record*> CSRSets = Records.getAllDerivedDefinitions("CalleeSavedRegs"); for (unsigned i = 0, e = CSRSets.size(); i != e; ++i) { Record *CSRSet = CSRSets[i]; const SetTheory::RecVec *Regs = RegBank.getSets().expand(CSRSet); assert(Regs && "Cannot expand CalleeSavedRegs instance"); // Emit the *_SaveList list of callee-saved registers. OS << "static const MCPhysReg " << CSRSet->getName() << "_SaveList[] = { "; for (unsigned r = 0, re = Regs->size(); r != re; ++r) OS << getQualifiedName((*Regs)[r]) << ", "; OS << "0 };\n"; // Emit the *_RegMask bit mask of call-preserved registers. BitVector Covered = RegBank.computeCoveredRegisters(*Regs); // Check for an optional OtherPreserved set. // Add those registers to RegMask, but not to SaveList. if (DagInit *OPDag = dyn_cast<DagInit>(CSRSet->getValueInit("OtherPreserved"))) { SetTheory::RecSet OPSet; RegBank.getSets().evaluate(OPDag, OPSet, CSRSet->getLoc()); Covered |= RegBank.computeCoveredRegisters( ArrayRef<Record*>(OPSet.begin(), OPSet.end())); } OS << "static const uint32_t " << CSRSet->getName() << "_RegMask[] = { "; printBitVectorAsHex(OS, Covered, 32); OS << "};\n"; } OS << "\n\n"; OS << "ArrayRef<const uint32_t *> " << ClassName << "::getRegMasks() const {\n"; if (!CSRSets.empty()) { OS << " static const uint32_t *const Masks[] = {\n"; for (Record *CSRSet : CSRSets) OS << " " << CSRSet->getName() << "_RegMask,\n"; OS << " };\n"; OS << " return makeArrayRef(Masks);\n"; } else { OS << " return None;\n"; } OS << "}\n\n"; OS << "ArrayRef<const char *> " << ClassName << "::getRegMaskNames() const {\n"; if (!CSRSets.empty()) { OS << " static const char *const Names[] = {\n"; for (Record *CSRSet : CSRSets) OS << " " << '"' << CSRSet->getName() << '"' << ",\n"; OS << " };\n"; OS << " return makeArrayRef(Names);\n"; } else { OS << " return None;\n"; } OS << "}\n\n"; OS << "const " << TargetName << "FrameLowering *\n" << TargetName << "GenRegisterInfo::getFrameLowering(const MachineFunction &MF) {\n" << " return static_cast<const " << TargetName << "FrameLowering *>(\n" << " MF.getSubtarget().getFrameLowering());\n" << "}\n\n"; OS << "} // End llvm namespace\n"; OS << "#endif // GET_REGINFO_TARGET_DESC\n\n"; } void RegisterInfoEmitter::run(raw_ostream &OS) { CodeGenTarget Target(Records); CodeGenRegBank &RegBank = Target.getRegBank(); RegBank.computeDerivedInfo(); runEnums(OS, Target, RegBank); runMCDesc(OS, Target, RegBank); runTargetHeader(OS, Target, RegBank); runTargetDesc(OS, Target, RegBank); } namespace llvm { void EmitRegisterInfo(RecordKeeper &RK, raw_ostream &OS) { RegisterInfoEmitter(RK).run(OS); } } // End llvm namespace