//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements a register stacking pass.
///
/// This pass reorders instructions to put register uses and defs in an order
/// such that they form single-use expression trees. Registers fitting this form
/// are then marked as "stackified", meaning references to them are replaced by
/// "push" and "pop" from the stack.
///
/// This is primarily a code size optimization, since temporary values on the
/// expression don't need to be named.
///
//===----------------------------------------------------------------------===//
#include "WebAssembly.h"
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
#include "WebAssemblyMachineFunctionInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "wasm-reg-stackify"
namespace {
class WebAssemblyRegStackify final : public MachineFunctionPass {
const char *getPassName() const override {
return "WebAssembly Register Stackify";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<MachineBlockFrequencyInfo>();
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
public:
static char ID; // Pass identification, replacement for typeid
WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
};
} // end anonymous namespace
char WebAssemblyRegStackify::ID = 0;
FunctionPass *llvm::createWebAssemblyRegStackify() {
return new WebAssemblyRegStackify();
}
// Decorate the given instruction with implicit operands that enforce the
// expression stack ordering constraints needed for an instruction which is
// consumed by an instruction using the expression stack.
static void ImposeStackInputOrdering(MachineInstr *MI) {
// Write the opaque EXPR_STACK register.
if (!MI->definesRegister(WebAssembly::EXPR_STACK))
MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK,
/*isDef=*/true,
/*isImp=*/true));
}
// Decorate the given instruction with implicit operands that enforce the
// expression stack ordering constraints for an instruction which is on
// the expression stack.
static void ImposeStackOrdering(MachineInstr *MI, MachineRegisterInfo &MRI) {
ImposeStackInputOrdering(MI);
// Also read the opaque EXPR_STACK register.
if (!MI->readsRegister(WebAssembly::EXPR_STACK))
MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK,
/*isDef=*/false,
/*isImp=*/true));
// Also, mark any inputs to this instruction as being consumed by an
// instruction on the expression stack.
// TODO: Find a lighter way to describe the appropriate constraints.
for (MachineOperand &MO : MI->uses()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
MachineInstr *Def = MRI.getVRegDef(Reg);
if (Def->getOpcode() == TargetOpcode::PHI)
continue;
ImposeStackInputOrdering(Def);
}
}
// Test whether it's safe to move Def to just before Insert. Note that this
// doesn't account for physical register dependencies, because WebAssembly
// doesn't have any (other than special ones like EXPR_STACK).
// TODO: Compute memory dependencies in a way that doesn't require always
// walking the block.
// TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
// more precise.
static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
AliasAnalysis &AA) {
assert(Def->getParent() == Insert->getParent());
bool SawStore = false, SawSideEffects = false;
MachineBasicBlock::const_iterator D(Def), I(Insert);
for (--I; I != D; --I)
SawSideEffects |= I->isSafeToMove(&AA, SawStore);
return !(SawStore && Def->mayLoad() && !Def->isInvariantLoad(&AA)) &&
!(SawSideEffects && !Def->isSafeToMove(&AA, SawStore));
}
bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********** Register Stackifying **********\n"
"********** Function: "
<< MF.getName() << '\n');
bool Changed = false;
MachineRegisterInfo &MRI = MF.getRegInfo();
WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
assert(MRI.isSSA() && "RegStackify depends on SSA form");
// Walk the instructions from the bottom up. Currently we don't look past
// block boundaries, and the blocks aren't ordered so the block visitation
// order isn't significant, but we may want to change this in the future.
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : reverse(MBB)) {
MachineInstr *Insert = &MI;
// Don't nest anything inside a phi.
if (Insert->getOpcode() == TargetOpcode::PHI)
break;
// Don't nest anything inside an inline asm, because we don't have
// constraints for $push inputs.
if (Insert->getOpcode() == TargetOpcode::INLINEASM)
break;
// Iterate through the inputs in reverse order, since we'll be pulling
// operands off the stack in LIFO order.
bool AnyStackified = false;
for (MachineOperand &Op : reverse(Insert->uses())) {
// We're only interested in explicit virtual register operands.
if (!Op.isReg() || Op.isImplicit() || !Op.isUse())
continue;
unsigned Reg = Op.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
// An instruction with a physical register. Conservatively mark it as
// an expression stack input so that it isn't reordered with anything
// in an expression stack which might use it (physical registers
// aren't in SSA form so it's not trivial to determine this).
// TODO: Be less conservative.
ImposeStackInputOrdering(Insert);
continue;
}
// Only consider registers with a single definition.
// TODO: Eventually we may relax this, to stackify phi transfers.
MachineInstr *Def = MRI.getVRegDef(Reg);
if (!Def)
continue;
// There's no use in nesting implicit defs inside anything.
if (Def->getOpcode() == TargetOpcode::IMPLICIT_DEF)
continue;
// Don't nest an INLINE_ASM def into anything, because we don't have
// constraints for $pop outputs.
if (Def->getOpcode() == TargetOpcode::INLINEASM)
continue;
// Don't nest PHIs inside of anything.
if (Def->getOpcode() == TargetOpcode::PHI)
continue;
// Argument instructions represent live-in registers and not real
// instructions.
if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 ||
Def->getOpcode() == WebAssembly::ARGUMENT_I64 ||
Def->getOpcode() == WebAssembly::ARGUMENT_F32 ||
Def->getOpcode() == WebAssembly::ARGUMENT_F64)
continue;
// Single-use expression trees require defs that have one use.
// TODO: Eventually we'll relax this, to take advantage of set_local
// returning its result.
if (!MRI.hasOneUse(Reg))
continue;
// For now, be conservative and don't look across block boundaries.
// TODO: Be more aggressive.
if (Def->getParent() != &MBB)
continue;
// Don't move instructions that have side effects or memory dependencies
// or other complications.
if (!IsSafeToMove(Def, Insert, AA))
continue;
Changed = true;
AnyStackified = true;
// Move the def down and nest it in the current instruction.
MBB.insert(MachineBasicBlock::instr_iterator(Insert),
Def->removeFromParent());
MFI.stackifyVReg(Reg);
ImposeStackOrdering(Def, MRI);
Insert = Def;
}
if (AnyStackified)
ImposeStackOrdering(&MI, MRI);
}
}
// If we used EXPR_STACK anywhere, add it to the live-in sets everywhere
// so that it never looks like a use-before-def.
if (Changed) {
MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK);
for (MachineBasicBlock &MBB : MF)
MBB.addLiveIn(WebAssembly::EXPR_STACK);
}
#ifndef NDEBUG
// Verify that pushes and pops are performed in FIFO order.
SmallVector<unsigned, 0> Stack;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
for (MachineOperand &MO : reverse(MI.explicit_operands())) {
if (!MO.isReg())
continue;
unsigned VReg = MO.getReg();
// Don't stackify physregs like SP or FP.
if (!TargetRegisterInfo::isVirtualRegister(VReg))
continue;
if (MFI.isVRegStackified(VReg)) {
if (MO.isDef())
Stack.push_back(VReg);
else
assert(Stack.pop_back_val() == VReg);
}
}
}
// TODO: Generalize this code to support keeping values on the stack across
// basic block boundaries.
assert(Stack.empty());
}
#endif
return Changed;
}