//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file implements a register stacking pass. /// /// This pass reorders instructions to put register uses and defs in an order /// such that they form single-use expression trees. Registers fitting this form /// are then marked as "stackified", meaning references to them are replaced by /// "push" and "pop" from the stack. /// /// This is primarily a code size optimization, since temporary values on the /// expression don't need to be named. /// //===----------------------------------------------------------------------===// #include "WebAssembly.h" #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* #include "WebAssemblyMachineFunctionInfo.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "wasm-reg-stackify" namespace { class WebAssemblyRegStackify final : public MachineFunctionPass { const char *getPassName() const override { return "WebAssembly Register Stackify"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired<AAResultsWrapperPass>(); AU.addPreserved<MachineBlockFrequencyInfo>(); AU.addPreservedID(MachineDominatorsID); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; public: static char ID; // Pass identification, replacement for typeid WebAssemblyRegStackify() : MachineFunctionPass(ID) {} }; } // end anonymous namespace char WebAssemblyRegStackify::ID = 0; FunctionPass *llvm::createWebAssemblyRegStackify() { return new WebAssemblyRegStackify(); } // Decorate the given instruction with implicit operands that enforce the // expression stack ordering constraints needed for an instruction which is // consumed by an instruction using the expression stack. static void ImposeStackInputOrdering(MachineInstr *MI) { // Write the opaque EXPR_STACK register. if (!MI->definesRegister(WebAssembly::EXPR_STACK)) MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, /*isDef=*/true, /*isImp=*/true)); } // Decorate the given instruction with implicit operands that enforce the // expression stack ordering constraints for an instruction which is on // the expression stack. static void ImposeStackOrdering(MachineInstr *MI, MachineRegisterInfo &MRI) { ImposeStackInputOrdering(MI); // Also read the opaque EXPR_STACK register. if (!MI->readsRegister(WebAssembly::EXPR_STACK)) MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, /*isDef=*/false, /*isImp=*/true)); // Also, mark any inputs to this instruction as being consumed by an // instruction on the expression stack. // TODO: Find a lighter way to describe the appropriate constraints. for (MachineOperand &MO : MI->uses()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; MachineInstr *Def = MRI.getVRegDef(Reg); if (Def->getOpcode() == TargetOpcode::PHI) continue; ImposeStackInputOrdering(Def); } } // Test whether it's safe to move Def to just before Insert. Note that this // doesn't account for physical register dependencies, because WebAssembly // doesn't have any (other than special ones like EXPR_STACK). // TODO: Compute memory dependencies in a way that doesn't require always // walking the block. // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be // more precise. static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, AliasAnalysis &AA) { assert(Def->getParent() == Insert->getParent()); bool SawStore = false, SawSideEffects = false; MachineBasicBlock::const_iterator D(Def), I(Insert); for (--I; I != D; --I) SawSideEffects |= I->isSafeToMove(&AA, SawStore); return !(SawStore && Def->mayLoad() && !Def->isInvariantLoad(&AA)) && !(SawSideEffects && !Def->isSafeToMove(&AA, SawStore)); } bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { DEBUG(dbgs() << "********** Register Stackifying **********\n" "********** Function: " << MF.getName() << '\n'); bool Changed = false; MachineRegisterInfo &MRI = MF.getRegInfo(); WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); assert(MRI.isSSA() && "RegStackify depends on SSA form"); // Walk the instructions from the bottom up. Currently we don't look past // block boundaries, and the blocks aren't ordered so the block visitation // order isn't significant, but we may want to change this in the future. for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : reverse(MBB)) { MachineInstr *Insert = &MI; // Don't nest anything inside a phi. if (Insert->getOpcode() == TargetOpcode::PHI) break; // Don't nest anything inside an inline asm, because we don't have // constraints for $push inputs. if (Insert->getOpcode() == TargetOpcode::INLINEASM) break; // Iterate through the inputs in reverse order, since we'll be pulling // operands off the stack in LIFO order. bool AnyStackified = false; for (MachineOperand &Op : reverse(Insert->uses())) { // We're only interested in explicit virtual register operands. if (!Op.isReg() || Op.isImplicit() || !Op.isUse()) continue; unsigned Reg = Op.getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) { // An instruction with a physical register. Conservatively mark it as // an expression stack input so that it isn't reordered with anything // in an expression stack which might use it (physical registers // aren't in SSA form so it's not trivial to determine this). // TODO: Be less conservative. ImposeStackInputOrdering(Insert); continue; } // Only consider registers with a single definition. // TODO: Eventually we may relax this, to stackify phi transfers. MachineInstr *Def = MRI.getVRegDef(Reg); if (!Def) continue; // There's no use in nesting implicit defs inside anything. if (Def->getOpcode() == TargetOpcode::IMPLICIT_DEF) continue; // Don't nest an INLINE_ASM def into anything, because we don't have // constraints for $pop outputs. if (Def->getOpcode() == TargetOpcode::INLINEASM) continue; // Don't nest PHIs inside of anything. if (Def->getOpcode() == TargetOpcode::PHI) continue; // Argument instructions represent live-in registers and not real // instructions. if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 || Def->getOpcode() == WebAssembly::ARGUMENT_I64 || Def->getOpcode() == WebAssembly::ARGUMENT_F32 || Def->getOpcode() == WebAssembly::ARGUMENT_F64) continue; // Single-use expression trees require defs that have one use. // TODO: Eventually we'll relax this, to take advantage of set_local // returning its result. if (!MRI.hasOneUse(Reg)) continue; // For now, be conservative and don't look across block boundaries. // TODO: Be more aggressive. if (Def->getParent() != &MBB) continue; // Don't move instructions that have side effects or memory dependencies // or other complications. if (!IsSafeToMove(Def, Insert, AA)) continue; Changed = true; AnyStackified = true; // Move the def down and nest it in the current instruction. MBB.insert(MachineBasicBlock::instr_iterator(Insert), Def->removeFromParent()); MFI.stackifyVReg(Reg); ImposeStackOrdering(Def, MRI); Insert = Def; } if (AnyStackified) ImposeStackOrdering(&MI, MRI); } } // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere // so that it never looks like a use-before-def. if (Changed) { MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK); for (MachineBasicBlock &MBB : MF) MBB.addLiveIn(WebAssembly::EXPR_STACK); } #ifndef NDEBUG // Verify that pushes and pops are performed in FIFO order. SmallVector<unsigned, 0> Stack; for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : MBB) { for (MachineOperand &MO : reverse(MI.explicit_operands())) { if (!MO.isReg()) continue; unsigned VReg = MO.getReg(); // Don't stackify physregs like SP or FP. if (!TargetRegisterInfo::isVirtualRegister(VReg)) continue; if (MFI.isVRegStackified(VReg)) { if (MO.isDef()) Stack.push_back(VReg); else assert(Stack.pop_back_val() == VReg); } } } // TODO: Generalize this code to support keeping values on the stack across // basic block boundaries. assert(Stack.empty()); } #endif return Changed; }