// Copyright 2015 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// pack_SSE.h: optimized SSE specializations of the templates in pack.h.
#ifndef GEMMLOWP_INTERNAL_PACK_SSE_H_
#define GEMMLOWP_INTERNAL_PACK_SSE_H_
#include <smmintrin.h>
#include "pack.h"
namespace gemmlowp {
// Requantizes source values pointed by raw_src_ptr in [0..255] range
// to the range specified by BitDepth, [0..((2^bits)-1)].
// This is in-place requantization, where the input is
// not modified if 8bit integers are used. SSE does not
// have less than 8bit kernels currently. Altought SSE registers
// hold 16 uint8_t elements, only first 8 uint8_t elements are
// requantized. The packing only use first 8 uint8_t elements
// of the SSE registers. Therefore, requantizing all 16 uint8_t
// elements will be wasteful computation.
template <typename QuantizationParams>
void SSERequantize(
__m128i* raw_src_ptr,
ScalarRoundingOffsetGenerator<QuantizationParams::kRoundingMode>*
rounding_offset_generator) {
static const int kBits = QuantizationParams::BitDepth::kBits;
static const std::uint8_t kMaxVal = (1 << kBits) - 1;
if (kBits == 8) {
return;
}
std::uint8_t* raw_src_ui8_ptr = (std::uint8_t*)&raw_src_ptr[0];
// modify only first 8 elements in the register (see note above)
for (int i = 0; i < 8; ++i) {
std::uint16_t scaled =
static_cast<std::uint16_t>(raw_src_ui8_ptr[i]) * kMaxVal;
std::uint8_t rounding_offset = rounding_offset_generator->get();
raw_src_ui8_ptr[i] = (scaled + rounding_offset) / 255;
}
}
// TODO: Add DepthMajorUint8SideMap
typedef SideMap<const std::uint8_t, SideMapOrder::WidthMajor>
WidthMajorUint8SideMap;
template <int Cells>
using WidthMajorSideFormatNCells4x2 =
KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, Cells>;
template <typename QuantizationParams, int Cells>
class PackingRegisterBlock<
QuantizationParams, WidthMajorUint8SideMap,
PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells> > >
: public PackingRegisterBlockBase<
QuantizationParams, WidthMajorUint8SideMap,
PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells> > > {
public:
typedef WidthMajorSideFormatNCells4x2<Cells> KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
static const int kCells = KernelSideFormat::kCells;
static const int kCellWidth = CellFormat::kWidth;
static const int kKernelWidth = CellFormat::kWidth * kCells;
static const int kCellDepth = CellFormat::kDepth;
static const int kCellSize = CellFormat::kSize;
typedef ScalarRoundingOffsetGenerator<QuantizationParams::kRoundingMode>
RoundingOffsetGenerator;
void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width,
RoundingOffsetGenerator* rounding_offset_generator) {
std::uint8_t* dst_ptr = dst->current_data();
const int width_stride = this->complete_src_.width_stride();
int depth_step = 8;
__m128i one = _mm_set1_epi16(1);
for (int cell_start_depth = 0; cell_start_depth < kRegisterSize;
cell_start_depth += depth_step) {
for (int cell_start_width = 0; cell_start_width < kKernelWidth;
cell_start_width += kCellWidth) {
std::int32_t* cell_sums_of_each_slice_ptr =
dst->sums_of_each_slice() + start_width + cell_start_width;
const std::uint8_t* src_data =
this->complete_src_.data(cell_start_width, cell_start_depth);
__m128i xmm1 =
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(&src_data[0]));
__m128i xmm2 = _mm_loadl_epi64(
reinterpret_cast<const __m128i*>(&src_data[1 * width_stride]));
__m128i xmm3 = _mm_loadl_epi64(
reinterpret_cast<const __m128i*>(&src_data[2 * width_stride]));
__m128i xmm4 = _mm_loadl_epi64(
reinterpret_cast<const __m128i*>(&src_data[3 * width_stride]));
__m128i xmm5 = _mm_unpacklo_epi16(xmm1, xmm2);
__m128i xmm8 = _mm_shuffle_epi32(xmm5, 0x31);
__m128i xmm6 = _mm_unpacklo_epi16(xmm3, xmm4);
__m128i xmm7 = _mm_shuffle_epi32(xmm6, 0x80);
__m128i xmm9 = _mm_blend_epi16(xmm5, xmm7, 0xcc);
SSERequantize<QuantizationParams>(&xmm9, rounding_offset_generator);
__m128i xmm10 = _mm_blend_epi16(xmm8, xmm6, 0xcc);
SSERequantize<QuantizationParams>(&xmm10, rounding_offset_generator);
_mm_storel_epi64(reinterpret_cast<__m128i*>(&dst_ptr[0]), xmm9);
_mm_storel_epi64(
reinterpret_cast<__m128i*>(&dst_ptr[kCellSize * kCells]), xmm10);
__m128i xmm11 = _mm_shuffle_epi32(xmm9, 0xee);
SSERequantize<QuantizationParams>(&xmm11, rounding_offset_generator);
__m128i xmm12 = _mm_shuffle_epi32(xmm10, 0xee);
SSERequantize<QuantizationParams>(&xmm12, rounding_offset_generator);
_mm_storel_epi64(
reinterpret_cast<__m128i*>(&dst_ptr[2 * kCellSize * kCells]),
xmm11);
_mm_storel_epi64(
reinterpret_cast<__m128i*>(&dst_ptr[3 * kCellSize * kCells]),
xmm12);
xmm1 = _mm_cvtepu8_epi16(xmm9);
xmm2 = _mm_madd_epi16(xmm1, one);
__m128i sums_of_each_slice_xmm = _mm_loadu_si128(
reinterpret_cast<const __m128i*>(&cell_sums_of_each_slice_ptr[0]));
sums_of_each_slice_xmm = _mm_add_epi32(sums_of_each_slice_xmm, xmm2);
xmm1 = _mm_cvtepu8_epi16(xmm10);
xmm2 = _mm_madd_epi16(xmm1, one);
sums_of_each_slice_xmm = _mm_add_epi32(sums_of_each_slice_xmm, xmm2);
xmm1 = _mm_cvtepu8_epi16(xmm11);
xmm2 = _mm_madd_epi16(xmm1, one);
sums_of_each_slice_xmm = _mm_add_epi32(sums_of_each_slice_xmm, xmm2);
xmm1 = _mm_cvtepu8_epi16(xmm12);
xmm2 = _mm_madd_epi16(xmm1, one);
sums_of_each_slice_xmm = _mm_add_epi32(sums_of_each_slice_xmm, xmm2);
_mm_storeu_si128(
reinterpret_cast<__m128i*>(&cell_sums_of_each_slice_ptr[0]),
sums_of_each_slice_xmm);
dst_ptr += kCellSize;
}
dst_ptr += 3 * kCellSize * kCells;
}
dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth);
}
};
} // namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_PACK_SSE_H_