// Copyright 2015 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // pack_SSE.h: optimized SSE specializations of the templates in pack.h. #ifndef GEMMLOWP_INTERNAL_PACK_SSE_H_ #define GEMMLOWP_INTERNAL_PACK_SSE_H_ #include <smmintrin.h> #include "pack.h" namespace gemmlowp { // Requantizes source values pointed by raw_src_ptr in [0..255] range // to the range specified by BitDepth, [0..((2^bits)-1)]. // This is in-place requantization, where the input is // not modified if 8bit integers are used. SSE does not // have less than 8bit kernels currently. Altought SSE registers // hold 16 uint8_t elements, only first 8 uint8_t elements are // requantized. The packing only use first 8 uint8_t elements // of the SSE registers. Therefore, requantizing all 16 uint8_t // elements will be wasteful computation. template <typename QuantizationParams> void SSERequantize( __m128i* raw_src_ptr, ScalarRoundingOffsetGenerator<QuantizationParams::kRoundingMode>* rounding_offset_generator) { static const int kBits = QuantizationParams::BitDepth::kBits; static const std::uint8_t kMaxVal = (1 << kBits) - 1; if (kBits == 8) { return; } std::uint8_t* raw_src_ui8_ptr = (std::uint8_t*)&raw_src_ptr[0]; // modify only first 8 elements in the register (see note above) for (int i = 0; i < 8; ++i) { std::uint16_t scaled = static_cast<std::uint16_t>(raw_src_ui8_ptr[i]) * kMaxVal; std::uint8_t rounding_offset = rounding_offset_generator->get(); raw_src_ui8_ptr[i] = (scaled + rounding_offset) / 255; } } // TODO: Add DepthMajorUint8SideMap typedef SideMap<const std::uint8_t, SideMapOrder::WidthMajor> WidthMajorUint8SideMap; template <int Cells> using WidthMajorSideFormatNCells4x2 = KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, Cells>; template <typename QuantizationParams, int Cells> class PackingRegisterBlock< QuantizationParams, WidthMajorUint8SideMap, PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells> > > : public PackingRegisterBlockBase< QuantizationParams, WidthMajorUint8SideMap, PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells> > > { public: typedef WidthMajorSideFormatNCells4x2<Cells> KernelSideFormat; typedef typename KernelSideFormat::Cell CellFormat; static const int kCells = KernelSideFormat::kCells; static const int kCellWidth = CellFormat::kWidth; static const int kKernelWidth = CellFormat::kWidth * kCells; static const int kCellDepth = CellFormat::kDepth; static const int kCellSize = CellFormat::kSize; typedef ScalarRoundingOffsetGenerator<QuantizationParams::kRoundingMode> RoundingOffsetGenerator; void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width, RoundingOffsetGenerator* rounding_offset_generator) { std::uint8_t* dst_ptr = dst->current_data(); const int width_stride = this->complete_src_.width_stride(); int depth_step = 8; __m128i one = _mm_set1_epi16(1); for (int cell_start_depth = 0; cell_start_depth < kRegisterSize; cell_start_depth += depth_step) { for (int cell_start_width = 0; cell_start_width < kKernelWidth; cell_start_width += kCellWidth) { std::int32_t* cell_sums_of_each_slice_ptr = dst->sums_of_each_slice() + start_width + cell_start_width; const std::uint8_t* src_data = this->complete_src_.data(cell_start_width, cell_start_depth); __m128i xmm1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&src_data[0])); __m128i xmm2 = _mm_loadl_epi64( reinterpret_cast<const __m128i*>(&src_data[1 * width_stride])); __m128i xmm3 = _mm_loadl_epi64( reinterpret_cast<const __m128i*>(&src_data[2 * width_stride])); __m128i xmm4 = _mm_loadl_epi64( reinterpret_cast<const __m128i*>(&src_data[3 * width_stride])); __m128i xmm5 = _mm_unpacklo_epi16(xmm1, xmm2); __m128i xmm8 = _mm_shuffle_epi32(xmm5, 0x31); __m128i xmm6 = _mm_unpacklo_epi16(xmm3, xmm4); __m128i xmm7 = _mm_shuffle_epi32(xmm6, 0x80); __m128i xmm9 = _mm_blend_epi16(xmm5, xmm7, 0xcc); SSERequantize<QuantizationParams>(&xmm9, rounding_offset_generator); __m128i xmm10 = _mm_blend_epi16(xmm8, xmm6, 0xcc); SSERequantize<QuantizationParams>(&xmm10, rounding_offset_generator); _mm_storel_epi64(reinterpret_cast<__m128i*>(&dst_ptr[0]), xmm9); _mm_storel_epi64( reinterpret_cast<__m128i*>(&dst_ptr[kCellSize * kCells]), xmm10); __m128i xmm11 = _mm_shuffle_epi32(xmm9, 0xee); SSERequantize<QuantizationParams>(&xmm11, rounding_offset_generator); __m128i xmm12 = _mm_shuffle_epi32(xmm10, 0xee); SSERequantize<QuantizationParams>(&xmm12, rounding_offset_generator); _mm_storel_epi64( reinterpret_cast<__m128i*>(&dst_ptr[2 * kCellSize * kCells]), xmm11); _mm_storel_epi64( reinterpret_cast<__m128i*>(&dst_ptr[3 * kCellSize * kCells]), xmm12); xmm1 = _mm_cvtepu8_epi16(xmm9); xmm2 = _mm_madd_epi16(xmm1, one); __m128i sums_of_each_slice_xmm = _mm_loadu_si128( reinterpret_cast<const __m128i*>(&cell_sums_of_each_slice_ptr[0])); sums_of_each_slice_xmm = _mm_add_epi32(sums_of_each_slice_xmm, xmm2); xmm1 = _mm_cvtepu8_epi16(xmm10); xmm2 = _mm_madd_epi16(xmm1, one); sums_of_each_slice_xmm = _mm_add_epi32(sums_of_each_slice_xmm, xmm2); xmm1 = _mm_cvtepu8_epi16(xmm11); xmm2 = _mm_madd_epi16(xmm1, one); sums_of_each_slice_xmm = _mm_add_epi32(sums_of_each_slice_xmm, xmm2); xmm1 = _mm_cvtepu8_epi16(xmm12); xmm2 = _mm_madd_epi16(xmm1, one); sums_of_each_slice_xmm = _mm_add_epi32(sums_of_each_slice_xmm, xmm2); _mm_storeu_si128( reinterpret_cast<__m128i*>(&cell_sums_of_each_slice_ptr[0]), sums_of_each_slice_xmm); dst_ptr += kCellSize; } dst_ptr += 3 * kCellSize * kCells; } dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth); } }; } // namespace gemmlowp #endif // GEMMLOWP_INTERNAL_PACK_SSE_H_