/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBuffer.h"
#include "SkLazyPtr.h"
#include "SkPath.h"
#include "SkPathRef.h"
//////////////////////////////////////////////////////////////////////////////
SkPathRef::Editor::Editor(SkAutoTUnref<SkPathRef>* pathRef,
int incReserveVerbs,
int incReservePoints)
{
if ((*pathRef)->unique()) {
(*pathRef)->incReserve(incReserveVerbs, incReservePoints);
} else {
SkPathRef* copy = SkNEW(SkPathRef);
copy->copy(**pathRef, incReserveVerbs, incReservePoints);
pathRef->reset(copy);
}
fPathRef = *pathRef;
fPathRef->fGenerationID = 0;
SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);)
}
//////////////////////////////////////////////////////////////////////////////
// As a template argument, this must have external linkage.
SkPathRef* sk_create_empty_pathref() {
SkPathRef* empty = SkNEW(SkPathRef);
empty->computeBounds(); // Avoids races later to be the first to do this.
return empty;
}
SK_DECLARE_STATIC_LAZY_PTR(SkPathRef, empty, sk_create_empty_pathref);
SkPathRef* SkPathRef::CreateEmpty() {
return SkRef(empty.get());
}
void SkPathRef::CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst,
const SkPathRef& src,
const SkMatrix& matrix) {
SkDEBUGCODE(src.validate();)
if (matrix.isIdentity()) {
if (*dst != &src) {
src.ref();
dst->reset(const_cast<SkPathRef*>(&src));
SkDEBUGCODE((*dst)->validate();)
}
return;
}
if (!(*dst)->unique()) {
dst->reset(SkNEW(SkPathRef));
}
if (*dst != &src) {
(*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count());
memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t));
(*dst)->fConicWeights = src.fConicWeights;
}
SkASSERT((*dst)->countPoints() == src.countPoints());
SkASSERT((*dst)->countVerbs() == src.countVerbs());
SkASSERT((*dst)->fConicWeights.count() == src.fConicWeights.count());
// Need to check this here in case (&src == dst)
bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1;
matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt);
/*
* Here we optimize the bounds computation, by noting if the bounds are
* already known, and if so, we just transform those as well and mark
* them as "known", rather than force the transformed path to have to
* recompute them.
*
* Special gotchas if the path is effectively empty (<= 1 point) or
* if it is non-finite. In those cases bounds need to stay empty,
* regardless of the matrix.
*/
if (canXformBounds) {
(*dst)->fBoundsIsDirty = false;
if (src.fIsFinite) {
matrix.mapRect(&(*dst)->fBounds, src.fBounds);
if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) {
(*dst)->fBounds.setEmpty();
}
} else {
(*dst)->fIsFinite = false;
(*dst)->fBounds.setEmpty();
}
} else {
(*dst)->fBoundsIsDirty = true;
}
(*dst)->fSegmentMask = src.fSegmentMask;
// It's an oval only if it stays a rect.
(*dst)->fIsOval = src.fIsOval && matrix.rectStaysRect();
SkDEBUGCODE((*dst)->validate();)
}
SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer) {
SkPathRef* ref = SkNEW(SkPathRef);
bool isOval;
uint8_t segmentMask;
int32_t packed;
if (!buffer->readS32(&packed)) {
SkDELETE(ref);
return NULL;
}
ref->fIsFinite = (packed >> kIsFinite_SerializationShift) & 1;
segmentMask = (packed >> kSegmentMask_SerializationShift) & 0xF;
isOval = (packed >> kIsOval_SerializationShift) & 1;
int32_t verbCount, pointCount, conicCount;
if (!buffer->readU32(&(ref->fGenerationID)) ||
!buffer->readS32(&verbCount) ||
!buffer->readS32(&pointCount) ||
!buffer->readS32(&conicCount)) {
SkDELETE(ref);
return NULL;
}
ref->resetToSize(verbCount, pointCount, conicCount);
SkASSERT(verbCount == ref->countVerbs());
SkASSERT(pointCount == ref->countPoints());
SkASSERT(conicCount == ref->fConicWeights.count());
if (!buffer->read(ref->verbsMemWritable(), verbCount * sizeof(uint8_t)) ||
!buffer->read(ref->fPoints, pointCount * sizeof(SkPoint)) ||
!buffer->read(ref->fConicWeights.begin(), conicCount * sizeof(SkScalar)) ||
!buffer->read(&ref->fBounds, sizeof(SkRect))) {
SkDELETE(ref);
return NULL;
}
ref->fBoundsIsDirty = false;
// resetToSize clears fSegmentMask and fIsOval
ref->fSegmentMask = segmentMask;
ref->fIsOval = isOval;
return ref;
}
void SkPathRef::Rewind(SkAutoTUnref<SkPathRef>* pathRef) {
if ((*pathRef)->unique()) {
SkDEBUGCODE((*pathRef)->validate();)
(*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite
(*pathRef)->fVerbCnt = 0;
(*pathRef)->fPointCnt = 0;
(*pathRef)->fFreeSpace = (*pathRef)->currSize();
(*pathRef)->fGenerationID = 0;
(*pathRef)->fConicWeights.rewind();
(*pathRef)->fSegmentMask = 0;
(*pathRef)->fIsOval = false;
SkDEBUGCODE((*pathRef)->validate();)
} else {
int oldVCnt = (*pathRef)->countVerbs();
int oldPCnt = (*pathRef)->countPoints();
pathRef->reset(SkNEW(SkPathRef));
(*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt);
}
}
bool SkPathRef::operator== (const SkPathRef& ref) const {
SkDEBUGCODE(this->validate();)
SkDEBUGCODE(ref.validate();)
// We explicitly check fSegmentMask as a quick-reject. We could skip it,
// since it is only a cache of info in the fVerbs, but its a fast way to
// notice a difference
if (fSegmentMask != ref.fSegmentMask) {
return false;
}
bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID;
#ifdef SK_RELEASE
if (genIDMatch) {
return true;
}
#endif
if (fPointCnt != ref.fPointCnt ||
fVerbCnt != ref.fVerbCnt) {
SkASSERT(!genIDMatch);
return false;
}
if (0 == ref.fVerbCnt) {
SkASSERT(0 == ref.fPointCnt);
return true;
}
SkASSERT(this->verbsMemBegin() && ref.verbsMemBegin());
if (0 != memcmp(this->verbsMemBegin(),
ref.verbsMemBegin(),
ref.fVerbCnt * sizeof(uint8_t))) {
SkASSERT(!genIDMatch);
return false;
}
SkASSERT(this->points() && ref.points());
if (0 != memcmp(this->points(),
ref.points(),
ref.fPointCnt * sizeof(SkPoint))) {
SkASSERT(!genIDMatch);
return false;
}
if (fConicWeights != ref.fConicWeights) {
SkASSERT(!genIDMatch);
return false;
}
// We've done the work to determine that these are equal. If either has a zero genID, copy
// the other's. If both are 0 then genID() will compute the next ID.
if (0 == fGenerationID) {
fGenerationID = ref.genID();
} else if (0 == ref.fGenerationID) {
ref.fGenerationID = this->genID();
}
return true;
}
void SkPathRef::writeToBuffer(SkWBuffer* buffer) const {
SkDEBUGCODE(this->validate();)
SkDEBUGCODE(size_t beforePos = buffer->pos();)
// Call getBounds() to ensure (as a side-effect) that fBounds
// and fIsFinite are computed.
const SkRect& bounds = this->getBounds();
int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) |
((fIsOval & 1) << kIsOval_SerializationShift) |
(fSegmentMask << kSegmentMask_SerializationShift);
buffer->write32(packed);
// TODO: write gen ID here. Problem: We don't know if we're cross process or not from
// SkWBuffer. Until this is fixed we write 0.
buffer->write32(0);
buffer->write32(fVerbCnt);
buffer->write32(fPointCnt);
buffer->write32(fConicWeights.count());
buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t));
buffer->write(fPoints, fPointCnt * sizeof(SkPoint));
buffer->write(fConicWeights.begin(), fConicWeights.bytes());
buffer->write(&bounds, sizeof(bounds));
SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize());
}
uint32_t SkPathRef::writeSize() const {
return uint32_t(5 * sizeof(uint32_t) +
fVerbCnt * sizeof(uint8_t) +
fPointCnt * sizeof(SkPoint) +
fConicWeights.bytes() +
sizeof(SkRect));
}
void SkPathRef::copy(const SkPathRef& ref,
int additionalReserveVerbs,
int additionalReservePoints) {
SkDEBUGCODE(this->validate();)
this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(),
additionalReserveVerbs, additionalReservePoints);
memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t));
memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint));
fConicWeights = ref.fConicWeights;
// We could call genID() here to force a real ID (instead of 0). However, if we're making
// a copy then presumably we intend to make a modification immediately afterwards.
fGenerationID = ref.fGenerationID;
fBoundsIsDirty = ref.fBoundsIsDirty;
if (!fBoundsIsDirty) {
fBounds = ref.fBounds;
fIsFinite = ref.fIsFinite;
}
fSegmentMask = ref.fSegmentMask;
fIsOval = ref.fIsOval;
SkDEBUGCODE(this->validate();)
}
SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb,
int numVbs,
SkScalar** weights) {
// This value is just made-up for now. When count is 4, calling memset was much
// slower than just writing the loop. This seems odd, and hopefully in the
// future this will appear to have been a fluke...
static const unsigned int kMIN_COUNT_FOR_MEMSET_TO_BE_FAST = 16;
SkDEBUGCODE(this->validate();)
int pCnt;
bool dirtyAfterEdit = true;
switch (verb) {
case SkPath::kMove_Verb:
pCnt = numVbs;
dirtyAfterEdit = false;
break;
case SkPath::kLine_Verb:
fSegmentMask |= SkPath::kLine_SegmentMask;
pCnt = numVbs;
break;
case SkPath::kQuad_Verb:
fSegmentMask |= SkPath::kQuad_SegmentMask;
pCnt = 2 * numVbs;
break;
case SkPath::kConic_Verb:
fSegmentMask |= SkPath::kConic_SegmentMask;
pCnt = 2 * numVbs;
break;
case SkPath::kCubic_Verb:
fSegmentMask |= SkPath::kCubic_SegmentMask;
pCnt = 3 * numVbs;
break;
case SkPath::kClose_Verb:
SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb");
pCnt = 0;
dirtyAfterEdit = false;
break;
case SkPath::kDone_Verb:
SkDEBUGFAIL("growForRepeatedVerb called for kDone");
// fall through
default:
SkDEBUGFAIL("default should not be reached");
pCnt = 0;
dirtyAfterEdit = false;
}
size_t space = numVbs * sizeof(uint8_t) + pCnt * sizeof (SkPoint);
this->makeSpace(space);
SkPoint* ret = fPoints + fPointCnt;
uint8_t* vb = fVerbs - fVerbCnt;
// cast to unsigned, so if kMIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to
// be 0, the compiler will remove the test/branch entirely.
if ((unsigned)numVbs >= kMIN_COUNT_FOR_MEMSET_TO_BE_FAST) {
memset(vb - numVbs, verb, numVbs);
} else {
for (int i = 0; i < numVbs; ++i) {
vb[~i] = verb;
}
}
fVerbCnt += numVbs;
fPointCnt += pCnt;
fFreeSpace -= space;
fBoundsIsDirty = true; // this also invalidates fIsFinite
if (dirtyAfterEdit) {
fIsOval = false;
}
if (SkPath::kConic_Verb == verb) {
SkASSERT(weights);
*weights = fConicWeights.append(numVbs);
}
SkDEBUGCODE(this->validate();)
return ret;
}
SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) {
SkDEBUGCODE(this->validate();)
int pCnt;
bool dirtyAfterEdit = true;
switch (verb) {
case SkPath::kMove_Verb:
pCnt = 1;
dirtyAfterEdit = false;
break;
case SkPath::kLine_Verb:
fSegmentMask |= SkPath::kLine_SegmentMask;
pCnt = 1;
break;
case SkPath::kQuad_Verb:
fSegmentMask |= SkPath::kQuad_SegmentMask;
pCnt = 2;
break;
case SkPath::kConic_Verb:
fSegmentMask |= SkPath::kConic_SegmentMask;
pCnt = 2;
break;
case SkPath::kCubic_Verb:
fSegmentMask |= SkPath::kCubic_SegmentMask;
pCnt = 3;
break;
case SkPath::kClose_Verb:
pCnt = 0;
dirtyAfterEdit = false;
break;
case SkPath::kDone_Verb:
SkDEBUGFAIL("growForVerb called for kDone");
// fall through
default:
SkDEBUGFAIL("default is not reached");
dirtyAfterEdit = false;
pCnt = 0;
}
size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint);
this->makeSpace(space);
this->fVerbs[~fVerbCnt] = verb;
SkPoint* ret = fPoints + fPointCnt;
fVerbCnt += 1;
fPointCnt += pCnt;
fFreeSpace -= space;
fBoundsIsDirty = true; // this also invalidates fIsFinite
if (dirtyAfterEdit) {
fIsOval = false;
}
if (SkPath::kConic_Verb == verb) {
*fConicWeights.append() = weight;
}
SkDEBUGCODE(this->validate();)
return ret;
}
uint32_t SkPathRef::genID() const {
SkASSERT(!fEditorsAttached);
static const uint32_t kMask = (static_cast<int64_t>(1) << SkPath::kPathRefGenIDBitCnt) - 1;
if (!fGenerationID) {
if (0 == fPointCnt && 0 == fVerbCnt) {
fGenerationID = kEmptyGenID;
} else {
static int32_t gPathRefGenerationID;
// do a loop in case our global wraps around, as we never want to return a 0 or the
// empty ID
do {
fGenerationID = (sk_atomic_inc(&gPathRefGenerationID) + 1) & kMask;
} while (fGenerationID <= kEmptyGenID);
}
}
return fGenerationID;
}
#ifdef SK_DEBUG
void SkPathRef::validate() const {
this->INHERITED::validate();
SkASSERT(static_cast<ptrdiff_t>(fFreeSpace) >= 0);
SkASSERT(reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints) >= 0);
SkASSERT((NULL == fPoints) == (NULL == fVerbs));
SkASSERT(!(NULL == fPoints && 0 != fFreeSpace));
SkASSERT(!(NULL == fPoints && 0 != fFreeSpace));
SkASSERT(!(NULL == fPoints && fPointCnt));
SkASSERT(!(NULL == fVerbs && fVerbCnt));
SkASSERT(this->currSize() ==
fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt);
if (!fBoundsIsDirty && !fBounds.isEmpty()) {
bool isFinite = true;
for (int i = 0; i < fPointCnt; ++i) {
#ifdef SK_DEBUG
if (fPoints[i].isFinite() &&
(fPoints[i].fX < fBounds.fLeft || fPoints[i].fX > fBounds.fRight ||
fPoints[i].fY < fBounds.fTop || fPoints[i].fY > fBounds.fBottom)) {
SkDebugf("bounds: %f %f %f %f\n",
fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
for (int j = 0; j < fPointCnt; ++j) {
if (i == j) {
SkDebugf("*");
}
SkDebugf("%f %f\n", fPoints[j].fX, fPoints[j].fY);
}
}
#endif
SkASSERT(!fPoints[i].isFinite() ||
(fPoints[i].fX >= fBounds.fLeft && fPoints[i].fX <= fBounds.fRight &&
fPoints[i].fY >= fBounds.fTop && fPoints[i].fY <= fBounds.fBottom));
if (!fPoints[i].isFinite()) {
isFinite = false;
}
}
SkASSERT(SkToBool(fIsFinite) == isFinite);
}
#ifdef SK_DEBUG_PATH
uint32_t mask = 0;
for (int i = 0; i < fVerbCnt; ++i) {
switch (fVerbs[~i]) {
case SkPath::kMove_Verb:
break;
case SkPath::kLine_Verb:
mask |= SkPath::kLine_SegmentMask;
break;
case SkPath::kQuad_Verb:
mask |= SkPath::kQuad_SegmentMask;
break;
case SkPath::kConic_Verb:
mask |= SkPath::kConic_SegmentMask;
break;
case SkPath::kCubic_Verb:
mask |= SkPath::kCubic_SegmentMask;
break;
case SkPath::kClose_Verb:
break;
case SkPath::kDone_Verb:
SkDEBUGFAIL("Done verb shouldn't be recorded.");
break;
default:
SkDEBUGFAIL("Unknown Verb");
break;
}
}
SkASSERT(mask == fSegmentMask);
#endif // SK_DEBUG_PATH
}
#endif