/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBuffer.h" #include "SkLazyPtr.h" #include "SkPath.h" #include "SkPathRef.h" ////////////////////////////////////////////////////////////////////////////// SkPathRef::Editor::Editor(SkAutoTUnref<SkPathRef>* pathRef, int incReserveVerbs, int incReservePoints) { if ((*pathRef)->unique()) { (*pathRef)->incReserve(incReserveVerbs, incReservePoints); } else { SkPathRef* copy = SkNEW(SkPathRef); copy->copy(**pathRef, incReserveVerbs, incReservePoints); pathRef->reset(copy); } fPathRef = *pathRef; fPathRef->fGenerationID = 0; SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);) } ////////////////////////////////////////////////////////////////////////////// // As a template argument, this must have external linkage. SkPathRef* sk_create_empty_pathref() { SkPathRef* empty = SkNEW(SkPathRef); empty->computeBounds(); // Avoids races later to be the first to do this. return empty; } SK_DECLARE_STATIC_LAZY_PTR(SkPathRef, empty, sk_create_empty_pathref); SkPathRef* SkPathRef::CreateEmpty() { return SkRef(empty.get()); } void SkPathRef::CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst, const SkPathRef& src, const SkMatrix& matrix) { SkDEBUGCODE(src.validate();) if (matrix.isIdentity()) { if (*dst != &src) { src.ref(); dst->reset(const_cast<SkPathRef*>(&src)); SkDEBUGCODE((*dst)->validate();) } return; } if (!(*dst)->unique()) { dst->reset(SkNEW(SkPathRef)); } if (*dst != &src) { (*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count()); memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t)); (*dst)->fConicWeights = src.fConicWeights; } SkASSERT((*dst)->countPoints() == src.countPoints()); SkASSERT((*dst)->countVerbs() == src.countVerbs()); SkASSERT((*dst)->fConicWeights.count() == src.fConicWeights.count()); // Need to check this here in case (&src == dst) bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1; matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt); /* * Here we optimize the bounds computation, by noting if the bounds are * already known, and if so, we just transform those as well and mark * them as "known", rather than force the transformed path to have to * recompute them. * * Special gotchas if the path is effectively empty (<= 1 point) or * if it is non-finite. In those cases bounds need to stay empty, * regardless of the matrix. */ if (canXformBounds) { (*dst)->fBoundsIsDirty = false; if (src.fIsFinite) { matrix.mapRect(&(*dst)->fBounds, src.fBounds); if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) { (*dst)->fBounds.setEmpty(); } } else { (*dst)->fIsFinite = false; (*dst)->fBounds.setEmpty(); } } else { (*dst)->fBoundsIsDirty = true; } (*dst)->fSegmentMask = src.fSegmentMask; // It's an oval only if it stays a rect. (*dst)->fIsOval = src.fIsOval && matrix.rectStaysRect(); SkDEBUGCODE((*dst)->validate();) } SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer) { SkPathRef* ref = SkNEW(SkPathRef); bool isOval; uint8_t segmentMask; int32_t packed; if (!buffer->readS32(&packed)) { SkDELETE(ref); return NULL; } ref->fIsFinite = (packed >> kIsFinite_SerializationShift) & 1; segmentMask = (packed >> kSegmentMask_SerializationShift) & 0xF; isOval = (packed >> kIsOval_SerializationShift) & 1; int32_t verbCount, pointCount, conicCount; if (!buffer->readU32(&(ref->fGenerationID)) || !buffer->readS32(&verbCount) || !buffer->readS32(&pointCount) || !buffer->readS32(&conicCount)) { SkDELETE(ref); return NULL; } ref->resetToSize(verbCount, pointCount, conicCount); SkASSERT(verbCount == ref->countVerbs()); SkASSERT(pointCount == ref->countPoints()); SkASSERT(conicCount == ref->fConicWeights.count()); if (!buffer->read(ref->verbsMemWritable(), verbCount * sizeof(uint8_t)) || !buffer->read(ref->fPoints, pointCount * sizeof(SkPoint)) || !buffer->read(ref->fConicWeights.begin(), conicCount * sizeof(SkScalar)) || !buffer->read(&ref->fBounds, sizeof(SkRect))) { SkDELETE(ref); return NULL; } ref->fBoundsIsDirty = false; // resetToSize clears fSegmentMask and fIsOval ref->fSegmentMask = segmentMask; ref->fIsOval = isOval; return ref; } void SkPathRef::Rewind(SkAutoTUnref<SkPathRef>* pathRef) { if ((*pathRef)->unique()) { SkDEBUGCODE((*pathRef)->validate();) (*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite (*pathRef)->fVerbCnt = 0; (*pathRef)->fPointCnt = 0; (*pathRef)->fFreeSpace = (*pathRef)->currSize(); (*pathRef)->fGenerationID = 0; (*pathRef)->fConicWeights.rewind(); (*pathRef)->fSegmentMask = 0; (*pathRef)->fIsOval = false; SkDEBUGCODE((*pathRef)->validate();) } else { int oldVCnt = (*pathRef)->countVerbs(); int oldPCnt = (*pathRef)->countPoints(); pathRef->reset(SkNEW(SkPathRef)); (*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt); } } bool SkPathRef::operator== (const SkPathRef& ref) const { SkDEBUGCODE(this->validate();) SkDEBUGCODE(ref.validate();) // We explicitly check fSegmentMask as a quick-reject. We could skip it, // since it is only a cache of info in the fVerbs, but its a fast way to // notice a difference if (fSegmentMask != ref.fSegmentMask) { return false; } bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID; #ifdef SK_RELEASE if (genIDMatch) { return true; } #endif if (fPointCnt != ref.fPointCnt || fVerbCnt != ref.fVerbCnt) { SkASSERT(!genIDMatch); return false; } if (0 == ref.fVerbCnt) { SkASSERT(0 == ref.fPointCnt); return true; } SkASSERT(this->verbsMemBegin() && ref.verbsMemBegin()); if (0 != memcmp(this->verbsMemBegin(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t))) { SkASSERT(!genIDMatch); return false; } SkASSERT(this->points() && ref.points()); if (0 != memcmp(this->points(), ref.points(), ref.fPointCnt * sizeof(SkPoint))) { SkASSERT(!genIDMatch); return false; } if (fConicWeights != ref.fConicWeights) { SkASSERT(!genIDMatch); return false; } // We've done the work to determine that these are equal. If either has a zero genID, copy // the other's. If both are 0 then genID() will compute the next ID. if (0 == fGenerationID) { fGenerationID = ref.genID(); } else if (0 == ref.fGenerationID) { ref.fGenerationID = this->genID(); } return true; } void SkPathRef::writeToBuffer(SkWBuffer* buffer) const { SkDEBUGCODE(this->validate();) SkDEBUGCODE(size_t beforePos = buffer->pos();) // Call getBounds() to ensure (as a side-effect) that fBounds // and fIsFinite are computed. const SkRect& bounds = this->getBounds(); int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) | ((fIsOval & 1) << kIsOval_SerializationShift) | (fSegmentMask << kSegmentMask_SerializationShift); buffer->write32(packed); // TODO: write gen ID here. Problem: We don't know if we're cross process or not from // SkWBuffer. Until this is fixed we write 0. buffer->write32(0); buffer->write32(fVerbCnt); buffer->write32(fPointCnt); buffer->write32(fConicWeights.count()); buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t)); buffer->write(fPoints, fPointCnt * sizeof(SkPoint)); buffer->write(fConicWeights.begin(), fConicWeights.bytes()); buffer->write(&bounds, sizeof(bounds)); SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize()); } uint32_t SkPathRef::writeSize() const { return uint32_t(5 * sizeof(uint32_t) + fVerbCnt * sizeof(uint8_t) + fPointCnt * sizeof(SkPoint) + fConicWeights.bytes() + sizeof(SkRect)); } void SkPathRef::copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints) { SkDEBUGCODE(this->validate();) this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(), additionalReserveVerbs, additionalReservePoints); memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t)); memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint)); fConicWeights = ref.fConicWeights; // We could call genID() here to force a real ID (instead of 0). However, if we're making // a copy then presumably we intend to make a modification immediately afterwards. fGenerationID = ref.fGenerationID; fBoundsIsDirty = ref.fBoundsIsDirty; if (!fBoundsIsDirty) { fBounds = ref.fBounds; fIsFinite = ref.fIsFinite; } fSegmentMask = ref.fSegmentMask; fIsOval = ref.fIsOval; SkDEBUGCODE(this->validate();) } SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights) { // This value is just made-up for now. When count is 4, calling memset was much // slower than just writing the loop. This seems odd, and hopefully in the // future this will appear to have been a fluke... static const unsigned int kMIN_COUNT_FOR_MEMSET_TO_BE_FAST = 16; SkDEBUGCODE(this->validate();) int pCnt; bool dirtyAfterEdit = true; switch (verb) { case SkPath::kMove_Verb: pCnt = numVbs; dirtyAfterEdit = false; break; case SkPath::kLine_Verb: fSegmentMask |= SkPath::kLine_SegmentMask; pCnt = numVbs; break; case SkPath::kQuad_Verb: fSegmentMask |= SkPath::kQuad_SegmentMask; pCnt = 2 * numVbs; break; case SkPath::kConic_Verb: fSegmentMask |= SkPath::kConic_SegmentMask; pCnt = 2 * numVbs; break; case SkPath::kCubic_Verb: fSegmentMask |= SkPath::kCubic_SegmentMask; pCnt = 3 * numVbs; break; case SkPath::kClose_Verb: SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb"); pCnt = 0; dirtyAfterEdit = false; break; case SkPath::kDone_Verb: SkDEBUGFAIL("growForRepeatedVerb called for kDone"); // fall through default: SkDEBUGFAIL("default should not be reached"); pCnt = 0; dirtyAfterEdit = false; } size_t space = numVbs * sizeof(uint8_t) + pCnt * sizeof (SkPoint); this->makeSpace(space); SkPoint* ret = fPoints + fPointCnt; uint8_t* vb = fVerbs - fVerbCnt; // cast to unsigned, so if kMIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to // be 0, the compiler will remove the test/branch entirely. if ((unsigned)numVbs >= kMIN_COUNT_FOR_MEMSET_TO_BE_FAST) { memset(vb - numVbs, verb, numVbs); } else { for (int i = 0; i < numVbs; ++i) { vb[~i] = verb; } } fVerbCnt += numVbs; fPointCnt += pCnt; fFreeSpace -= space; fBoundsIsDirty = true; // this also invalidates fIsFinite if (dirtyAfterEdit) { fIsOval = false; } if (SkPath::kConic_Verb == verb) { SkASSERT(weights); *weights = fConicWeights.append(numVbs); } SkDEBUGCODE(this->validate();) return ret; } SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) { SkDEBUGCODE(this->validate();) int pCnt; bool dirtyAfterEdit = true; switch (verb) { case SkPath::kMove_Verb: pCnt = 1; dirtyAfterEdit = false; break; case SkPath::kLine_Verb: fSegmentMask |= SkPath::kLine_SegmentMask; pCnt = 1; break; case SkPath::kQuad_Verb: fSegmentMask |= SkPath::kQuad_SegmentMask; pCnt = 2; break; case SkPath::kConic_Verb: fSegmentMask |= SkPath::kConic_SegmentMask; pCnt = 2; break; case SkPath::kCubic_Verb: fSegmentMask |= SkPath::kCubic_SegmentMask; pCnt = 3; break; case SkPath::kClose_Verb: pCnt = 0; dirtyAfterEdit = false; break; case SkPath::kDone_Verb: SkDEBUGFAIL("growForVerb called for kDone"); // fall through default: SkDEBUGFAIL("default is not reached"); dirtyAfterEdit = false; pCnt = 0; } size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint); this->makeSpace(space); this->fVerbs[~fVerbCnt] = verb; SkPoint* ret = fPoints + fPointCnt; fVerbCnt += 1; fPointCnt += pCnt; fFreeSpace -= space; fBoundsIsDirty = true; // this also invalidates fIsFinite if (dirtyAfterEdit) { fIsOval = false; } if (SkPath::kConic_Verb == verb) { *fConicWeights.append() = weight; } SkDEBUGCODE(this->validate();) return ret; } uint32_t SkPathRef::genID() const { SkASSERT(!fEditorsAttached); static const uint32_t kMask = (static_cast<int64_t>(1) << SkPath::kPathRefGenIDBitCnt) - 1; if (!fGenerationID) { if (0 == fPointCnt && 0 == fVerbCnt) { fGenerationID = kEmptyGenID; } else { static int32_t gPathRefGenerationID; // do a loop in case our global wraps around, as we never want to return a 0 or the // empty ID do { fGenerationID = (sk_atomic_inc(&gPathRefGenerationID) + 1) & kMask; } while (fGenerationID <= kEmptyGenID); } } return fGenerationID; } #ifdef SK_DEBUG void SkPathRef::validate() const { this->INHERITED::validate(); SkASSERT(static_cast<ptrdiff_t>(fFreeSpace) >= 0); SkASSERT(reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints) >= 0); SkASSERT((NULL == fPoints) == (NULL == fVerbs)); SkASSERT(!(NULL == fPoints && 0 != fFreeSpace)); SkASSERT(!(NULL == fPoints && 0 != fFreeSpace)); SkASSERT(!(NULL == fPoints && fPointCnt)); SkASSERT(!(NULL == fVerbs && fVerbCnt)); SkASSERT(this->currSize() == fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt); if (!fBoundsIsDirty && !fBounds.isEmpty()) { bool isFinite = true; for (int i = 0; i < fPointCnt; ++i) { #ifdef SK_DEBUG if (fPoints[i].isFinite() && (fPoints[i].fX < fBounds.fLeft || fPoints[i].fX > fBounds.fRight || fPoints[i].fY < fBounds.fTop || fPoints[i].fY > fBounds.fBottom)) { SkDebugf("bounds: %f %f %f %f\n", fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); for (int j = 0; j < fPointCnt; ++j) { if (i == j) { SkDebugf("*"); } SkDebugf("%f %f\n", fPoints[j].fX, fPoints[j].fY); } } #endif SkASSERT(!fPoints[i].isFinite() || (fPoints[i].fX >= fBounds.fLeft && fPoints[i].fX <= fBounds.fRight && fPoints[i].fY >= fBounds.fTop && fPoints[i].fY <= fBounds.fBottom)); if (!fPoints[i].isFinite()) { isFinite = false; } } SkASSERT(SkToBool(fIsFinite) == isFinite); } #ifdef SK_DEBUG_PATH uint32_t mask = 0; for (int i = 0; i < fVerbCnt; ++i) { switch (fVerbs[~i]) { case SkPath::kMove_Verb: break; case SkPath::kLine_Verb: mask |= SkPath::kLine_SegmentMask; break; case SkPath::kQuad_Verb: mask |= SkPath::kQuad_SegmentMask; break; case SkPath::kConic_Verb: mask |= SkPath::kConic_SegmentMask; break; case SkPath::kCubic_Verb: mask |= SkPath::kCubic_SegmentMask; break; case SkPath::kClose_Verb: break; case SkPath::kDone_Verb: SkDEBUGFAIL("Done verb shouldn't be recorded."); break; default: SkDEBUGFAIL("Unknown Verb"); break; } } SkASSERT(mask == fSegmentMask); #endif // SK_DEBUG_PATH } #endif