/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCodec.h"
#include "SkJpegCodec.h"
#include "SkJpegDecoderMgr.h"
#include "SkJpegUtility.h"
#include "SkCodecPriv.h"
#include "SkColorPriv.h"
#include "SkStream.h"
#include "SkTemplates.h"
#include "SkTypes.h"
// stdio is needed for jpeglib
#include <stdio.h>
extern "C" {
#include "jerror.h"
#include "jmorecfg.h"
#include "jpegint.h"
#include "jpeglib.h"
}
// ANDROID_RGB
// If this is defined in the jpeg headers it indicates that jpeg offers
// support for two additional formats: JCS_RGBA_8888 and JCS_RGB_565.
/*
* Get the source configuarion for the swizzler
*/
SkSwizzler::SrcConfig get_src_config(const jpeg_decompress_struct& dinfo) {
if (JCS_CMYK == dinfo.out_color_space) {
// We will need to perform a manual conversion
return SkSwizzler::kRGBX;
}
if (3 == dinfo.out_color_components && JCS_RGB == dinfo.out_color_space) {
return SkSwizzler::kRGB;
}
#ifdef ANDROID_RGB
if (JCS_RGBA_8888 == dinfo.out_color_space) {
return SkSwizzler::kRGBX;
}
if (JCS_RGB_565 == dinfo.out_color_space) {
return SkSwizzler::kRGB_565;
}
#endif
if (1 == dinfo.out_color_components && JCS_GRAYSCALE == dinfo.out_color_space) {
return SkSwizzler::kGray;
}
return SkSwizzler::kUnknown;
}
/*
* Convert a row of CMYK samples to RGBX in place.
* Note that this method moves the row pointer.
* @param width the number of pixels in the row that is being converted
* CMYK is stored as four bytes per pixel
*/
static void convert_CMYK_to_RGB(uint8_t* row, uint32_t width) {
// We will implement a crude conversion from CMYK -> RGB using formulas
// from easyrgb.com.
//
// CMYK -> CMY
// C = C * (1 - K) + K
// M = M * (1 - K) + K
// Y = Y * (1 - K) + K
//
// libjpeg actually gives us inverted CMYK, so we must subtract the
// original terms from 1.
// CMYK -> CMY
// C = (1 - C) * (1 - (1 - K)) + (1 - K)
// M = (1 - M) * (1 - (1 - K)) + (1 - K)
// Y = (1 - Y) * (1 - (1 - K)) + (1 - K)
//
// Simplifying the above expression.
// CMYK -> CMY
// C = 1 - CK
// M = 1 - MK
// Y = 1 - YK
//
// CMY -> RGB
// R = (1 - C) * 255
// G = (1 - M) * 255
// B = (1 - Y) * 255
//
// Therefore the full conversion is below. This can be verified at
// www.rapidtables.com (assuming inverted CMYK).
// CMYK -> RGB
// R = C * K * 255
// G = M * K * 255
// B = Y * K * 255
//
// As a final note, we have treated the CMYK values as if they were on
// a scale from 0-1, when in fact they are 8-bit ints scaling from 0-255.
// We must divide each CMYK component by 255 to obtain the true conversion
// we should perform.
// CMYK -> RGB
// R = C * K / 255
// G = M * K / 255
// B = Y * K / 255
for (uint32_t x = 0; x < width; x++, row += 4) {
row[0] = SkMulDiv255Round(row[0], row[3]);
row[1] = SkMulDiv255Round(row[1], row[3]);
row[2] = SkMulDiv255Round(row[2], row[3]);
row[3] = 0xFF;
}
}
bool SkJpegCodec::IsJpeg(SkStream* stream) {
static const uint8_t jpegSig[] = { 0xFF, 0xD8, 0xFF };
char buffer[sizeof(jpegSig)];
return stream->read(buffer, sizeof(jpegSig)) == sizeof(jpegSig) &&
!memcmp(buffer, jpegSig, sizeof(jpegSig));
}
bool SkJpegCodec::ReadHeader(SkStream* stream, SkCodec** codecOut,
JpegDecoderMgr** decoderMgrOut) {
// Create a JpegDecoderMgr to own all of the decompress information
SkAutoTDelete<JpegDecoderMgr> decoderMgr(SkNEW_ARGS(JpegDecoderMgr, (stream)));
// libjpeg errors will be caught and reported here
if (setjmp(decoderMgr->getJmpBuf())) {
return decoderMgr->returnFalse("setjmp");
}
// Initialize the decompress info and the source manager
decoderMgr->init();
// Read the jpeg header
if (JPEG_HEADER_OK != jpeg_read_header(decoderMgr->dinfo(), true)) {
return decoderMgr->returnFalse("read_header");
}
if (NULL != codecOut) {
// Recommend the color type to decode to
const SkColorType colorType = decoderMgr->getColorType();
// Create image info object and the codec
const SkImageInfo& imageInfo = SkImageInfo::Make(decoderMgr->dinfo()->image_width,
decoderMgr->dinfo()->image_height, colorType, kOpaque_SkAlphaType);
*codecOut = SkNEW_ARGS(SkJpegCodec, (imageInfo, stream, decoderMgr.detach()));
} else {
SkASSERT(NULL != decoderMgrOut);
*decoderMgrOut = decoderMgr.detach();
}
return true;
}
SkCodec* SkJpegCodec::NewFromStream(SkStream* stream) {
SkAutoTDelete<SkStream> streamDeleter(stream);
SkCodec* codec = NULL;
if (ReadHeader(stream, &codec, NULL)) {
// Codec has taken ownership of the stream, we do not need to delete it
SkASSERT(codec);
streamDeleter.detach();
return codec;
}
return NULL;
}
SkJpegCodec::SkJpegCodec(const SkImageInfo& srcInfo, SkStream* stream,
JpegDecoderMgr* decoderMgr)
: INHERITED(srcInfo, stream)
, fDecoderMgr(decoderMgr)
, fSwizzler(NULL)
, fSrcRowBytes(0)
{}
/*
* Return a valid set of output dimensions for this decoder, given an input scale
*/
SkISize SkJpegCodec::onGetScaledDimensions(float desiredScale) const {
// libjpeg supports scaling by 1/1, 1/2, 1/4, and 1/8, so we will support these as well
long scale;
if (desiredScale > 0.75f) {
scale = 1;
} else if (desiredScale > 0.375f) {
scale = 2;
} else if (desiredScale > 0.1875f) {
scale = 4;
} else {
scale = 8;
}
// Set up a fake decompress struct in order to use libjpeg to calculate output dimensions
jpeg_decompress_struct dinfo;
sk_bzero(&dinfo, sizeof(dinfo));
dinfo.image_width = this->getInfo().width();
dinfo.image_height = this->getInfo().height();
dinfo.global_state = DSTATE_READY;
dinfo.num_components = 0;
dinfo.scale_num = 1;
dinfo.scale_denom = scale;
jpeg_calc_output_dimensions(&dinfo);
// Return the calculated output dimensions for the given scale
return SkISize::Make(dinfo.output_width, dinfo.output_height);
}
/*
* Checks if the conversion between the input image and the requested output
* image has been implemented
*/
static bool conversion_possible(const SkImageInfo& dst,
const SkImageInfo& src) {
// Ensure that the profile type is unchanged
if (dst.profileType() != src.profileType()) {
return false;
}
// Ensure that the alpha type is opaque
if (kOpaque_SkAlphaType != dst.alphaType()) {
return false;
}
// Always allow kN32 as the color type
if (kN32_SkColorType == dst.colorType()) {
return true;
}
// Otherwise require that the destination color type match our recommendation
return dst.colorType() == src.colorType();
}
/*
* Handles rewinding the input stream if it is necessary
*/
bool SkJpegCodec::handleRewind() {
switch(this->rewindIfNeeded()) {
case kCouldNotRewind_RewindState:
return fDecoderMgr->returnFalse("could not rewind");
case kRewound_RewindState: {
JpegDecoderMgr* decoderMgr = NULL;
if (!ReadHeader(this->stream(), NULL, &decoderMgr)) {
return fDecoderMgr->returnFalse("could not rewind");
}
SkASSERT(NULL != decoderMgr);
fDecoderMgr.reset(decoderMgr);
return true;
}
case kNoRewindNecessary_RewindState:
return true;
default:
SkASSERT(false);
return false;
}
}
/*
* Checks if we can scale to the requested dimensions and scales the dimensions
* if possible
*/
bool SkJpegCodec::scaleToDimensions(uint32_t dstWidth, uint32_t dstHeight) {
// libjpeg can scale to 1/1, 1/2, 1/4, and 1/8
SkASSERT(1 == fDecoderMgr->dinfo()->scale_num);
SkASSERT(1 == fDecoderMgr->dinfo()->scale_denom);
jpeg_calc_output_dimensions(fDecoderMgr->dinfo());
while (fDecoderMgr->dinfo()->output_width != dstWidth ||
fDecoderMgr->dinfo()->output_height != dstHeight) {
// Return a failure if we have tried all of the possible scales
if (8 == fDecoderMgr->dinfo()->scale_denom ||
dstWidth > fDecoderMgr->dinfo()->output_width ||
dstHeight > fDecoderMgr->dinfo()->output_height) {
return fDecoderMgr->returnFalse("could not scale to requested dimensions");
}
// Try the next scale
fDecoderMgr->dinfo()->scale_denom *= 2;
jpeg_calc_output_dimensions(fDecoderMgr->dinfo());
}
return true;
}
/*
* Create the swizzler based on the encoded format
*/
void SkJpegCodec::initializeSwizzler(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes,
const Options& options) {
SkSwizzler::SrcConfig srcConfig = get_src_config(*fDecoderMgr->dinfo());
fSwizzler.reset(SkSwizzler::CreateSwizzler(srcConfig, NULL, dstInfo, dst, dstRowBytes,
options.fZeroInitialized));
fSrcRowBytes = SkSwizzler::BytesPerPixel(srcConfig) * dstInfo.width();
}
/*
* Performs the jpeg decode
*/
SkCodec::Result SkJpegCodec::onGetPixels(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes,
const Options& options, SkPMColor*, int*) {
// Rewind the stream if needed
if (!this->handleRewind()) {
fDecoderMgr->returnFailure("could not rewind stream", kCouldNotRewind);
}
// Get a pointer to the decompress info since we will use it quite frequently
jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo();
// Set the jump location for libjpeg errors
if (setjmp(fDecoderMgr->getJmpBuf())) {
return fDecoderMgr->returnFailure("setjmp", kInvalidInput);
}
// Check if we can decode to the requested destination
if (!conversion_possible(dstInfo, this->getInfo())) {
return fDecoderMgr->returnFailure("conversion_possible", kInvalidConversion);
}
// Perform the necessary scaling
if (!this->scaleToDimensions(dstInfo.width(), dstInfo.height())) {
fDecoderMgr->returnFailure("cannot scale to requested dims", kInvalidScale);
}
// Now, given valid output dimensions, we can start the decompress
if (!jpeg_start_decompress(dinfo)) {
return fDecoderMgr->returnFailure("startDecompress", kInvalidInput);
}
// Create the swizzler
this->initializeSwizzler(dstInfo, dst, dstRowBytes, options);
if (NULL == fSwizzler) {
return fDecoderMgr->returnFailure("getSwizzler", kUnimplemented);
}
// This is usually 1, but can also be 2 or 4.
// If we wanted to always read one row at a time, we could, but we will save space and time
// by using the recommendation from libjpeg.
const uint32_t rowsPerDecode = dinfo->rec_outbuf_height;
SkASSERT(rowsPerDecode <= 4);
// Create a buffer to contain decoded rows (libjpeg requires a 2D array)
SkASSERT(0 != fSrcRowBytes);
SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, fSrcRowBytes * rowsPerDecode));
JSAMPLE* srcRows[4];
uint8_t* srcPtr = srcBuffer.get();
for (uint8_t i = 0; i < rowsPerDecode; i++) {
srcRows[i] = (JSAMPLE*) srcPtr;
srcPtr += fSrcRowBytes;
}
// Ensure that we loop enough times to decode all of the rows
// libjpeg will prevent us from reading past the bottom of the image
uint32_t dstHeight = dstInfo.height();
for (uint32_t y = 0; y < dstHeight + rowsPerDecode - 1; y += rowsPerDecode) {
// Read rows of the image
uint32_t rowsDecoded = jpeg_read_scanlines(dinfo, srcRows, rowsPerDecode);
// Convert to RGB if necessary
if (JCS_CMYK == dinfo->out_color_space) {
convert_CMYK_to_RGB(srcRows[0], dstInfo.width() * rowsDecoded);
}
// Swizzle to output destination
for (uint32_t i = 0; i < rowsDecoded; i++) {
fSwizzler->next(srcRows[i]);
}
// If we cannot read enough rows, assume the input is incomplete
if (rowsDecoded < rowsPerDecode && y + rowsDecoded < dstHeight) {
// Fill the remainder of the image with black. This error handling
// behavior is unspecified but SkCodec consistently uses black as
// the fill color for opaque images. If the destination is kGray,
// the low 8 bits of SK_ColorBLACK will be used. Conveniently,
// these are zeros, which is the representation for black in kGray.
SkSwizzler::Fill(fSwizzler->getDstRow(), dstInfo, dstRowBytes,
dstHeight - y - rowsDecoded, SK_ColorBLACK, NULL);
// Prevent libjpeg from failing on incomplete decode
dinfo->output_scanline = dstHeight;
// Finish the decode and indicate that the input was incomplete.
jpeg_finish_decompress(dinfo);
return fDecoderMgr->returnFailure("Incomplete image data", kIncompleteInput);
}
}
jpeg_finish_decompress(dinfo);
return kSuccess;
}
/*
* Enable scanline decoding for jpegs
*/
class SkJpegScanlineDecoder : public SkScanlineDecoder {
public:
SkJpegScanlineDecoder(const SkImageInfo& dstInfo, SkJpegCodec* codec)
: INHERITED(dstInfo)
, fCodec(codec)
{
fStorage.reset(fCodec->fSrcRowBytes);
fSrcRow = static_cast<uint8_t*>(fStorage.get());
}
SkImageGenerator::Result onGetScanlines(void* dst, int count, size_t rowBytes) override {
// Set the jump location for libjpeg errors
if (setjmp(fCodec->fDecoderMgr->getJmpBuf())) {
return fCodec->fDecoderMgr->returnFailure("setjmp", SkImageGenerator::kInvalidInput);
}
// Read rows one at a time
for (int y = 0; y < count; y++) {
// Read row of the image
uint32_t rowsDecoded = jpeg_read_scanlines(fCodec->fDecoderMgr->dinfo(), &fSrcRow, 1);
if (rowsDecoded != 1) {
SkSwizzler::Fill(dst, this->dstInfo(), rowBytes, count - y, SK_ColorBLACK, NULL);
return SkImageGenerator::kIncompleteInput;
}
// Convert to RGB if necessary
if (JCS_CMYK == fCodec->fDecoderMgr->dinfo()->out_color_space) {
convert_CMYK_to_RGB(fSrcRow, dstInfo().width());
}
// Swizzle to output destination
fCodec->fSwizzler->setDstRow(dst);
fCodec->fSwizzler->next(fSrcRow);
dst = SkTAddOffset<void>(dst, rowBytes);
}
return SkImageGenerator::kSuccess;
}
SkImageGenerator::Result onSkipScanlines(int count) override {
// Set the jump location for libjpeg errors
if (setjmp(fCodec->fDecoderMgr->getJmpBuf())) {
return fCodec->fDecoderMgr->returnFailure("setjmp", SkImageGenerator::kInvalidInput);
}
// Read rows but ignore the output
for (int y = 0; y < count; y++) {
jpeg_read_scanlines(fCodec->fDecoderMgr->dinfo(), &fSrcRow, 1);
}
return SkImageGenerator::kSuccess;
}
void onFinish() override {
if (setjmp(fCodec->fDecoderMgr->getJmpBuf())) {
SkCodecPrintf("setjmp: Error in libjpeg finish_decompress\n");
return;
}
jpeg_finish_decompress(fCodec->fDecoderMgr->dinfo());
}
private:
SkJpegCodec* fCodec; // unowned
SkAutoMalloc fStorage;
uint8_t* fSrcRow; // ptr into fStorage
typedef SkScanlineDecoder INHERITED;
};
SkScanlineDecoder* SkJpegCodec::onGetScanlineDecoder(const SkImageInfo& dstInfo,
const Options& options, SkPMColor ctable[], int* ctableCount) {
// Rewind the stream if needed
if (!this->handleRewind()) {
SkCodecPrintf("Could not rewind\n");
return NULL;
}
// Set the jump location for libjpeg errors
if (setjmp(fDecoderMgr->getJmpBuf())) {
SkCodecPrintf("setjmp: Error from libjpeg\n");
return NULL;
}
// Check if we can decode to the requested destination
if (!conversion_possible(dstInfo, this->getInfo())) {
SkCodecPrintf("Cannot convert to output type\n");
return NULL;
}
// Perform the necessary scaling
if (!this->scaleToDimensions(dstInfo.width(), dstInfo.height())) {
SkCodecPrintf("Cannot scale ot output dimensions\n");
return NULL;
}
// Now, given valid output dimensions, we can start the decompress
if (!jpeg_start_decompress(fDecoderMgr->dinfo())) {
SkCodecPrintf("start decompress failed\n");
return NULL;
}
// Create the swizzler
this->initializeSwizzler(dstInfo, NULL, dstInfo.minRowBytes(), options);
if (NULL == fSwizzler) {
SkCodecPrintf("Could not create swizzler\n");
return NULL;
}
// Return the new scanline decoder
return SkNEW_ARGS(SkJpegScanlineDecoder, (dstInfo, this));
}