/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkCodec.h" #include "SkJpegCodec.h" #include "SkJpegDecoderMgr.h" #include "SkJpegUtility.h" #include "SkCodecPriv.h" #include "SkColorPriv.h" #include "SkStream.h" #include "SkTemplates.h" #include "SkTypes.h" // stdio is needed for jpeglib #include <stdio.h> extern "C" { #include "jerror.h" #include "jmorecfg.h" #include "jpegint.h" #include "jpeglib.h" } // ANDROID_RGB // If this is defined in the jpeg headers it indicates that jpeg offers // support for two additional formats: JCS_RGBA_8888 and JCS_RGB_565. /* * Get the source configuarion for the swizzler */ SkSwizzler::SrcConfig get_src_config(const jpeg_decompress_struct& dinfo) { if (JCS_CMYK == dinfo.out_color_space) { // We will need to perform a manual conversion return SkSwizzler::kRGBX; } if (3 == dinfo.out_color_components && JCS_RGB == dinfo.out_color_space) { return SkSwizzler::kRGB; } #ifdef ANDROID_RGB if (JCS_RGBA_8888 == dinfo.out_color_space) { return SkSwizzler::kRGBX; } if (JCS_RGB_565 == dinfo.out_color_space) { return SkSwizzler::kRGB_565; } #endif if (1 == dinfo.out_color_components && JCS_GRAYSCALE == dinfo.out_color_space) { return SkSwizzler::kGray; } return SkSwizzler::kUnknown; } /* * Convert a row of CMYK samples to RGBX in place. * Note that this method moves the row pointer. * @param width the number of pixels in the row that is being converted * CMYK is stored as four bytes per pixel */ static void convert_CMYK_to_RGB(uint8_t* row, uint32_t width) { // We will implement a crude conversion from CMYK -> RGB using formulas // from easyrgb.com. // // CMYK -> CMY // C = C * (1 - K) + K // M = M * (1 - K) + K // Y = Y * (1 - K) + K // // libjpeg actually gives us inverted CMYK, so we must subtract the // original terms from 1. // CMYK -> CMY // C = (1 - C) * (1 - (1 - K)) + (1 - K) // M = (1 - M) * (1 - (1 - K)) + (1 - K) // Y = (1 - Y) * (1 - (1 - K)) + (1 - K) // // Simplifying the above expression. // CMYK -> CMY // C = 1 - CK // M = 1 - MK // Y = 1 - YK // // CMY -> RGB // R = (1 - C) * 255 // G = (1 - M) * 255 // B = (1 - Y) * 255 // // Therefore the full conversion is below. This can be verified at // www.rapidtables.com (assuming inverted CMYK). // CMYK -> RGB // R = C * K * 255 // G = M * K * 255 // B = Y * K * 255 // // As a final note, we have treated the CMYK values as if they were on // a scale from 0-1, when in fact they are 8-bit ints scaling from 0-255. // We must divide each CMYK component by 255 to obtain the true conversion // we should perform. // CMYK -> RGB // R = C * K / 255 // G = M * K / 255 // B = Y * K / 255 for (uint32_t x = 0; x < width; x++, row += 4) { row[0] = SkMulDiv255Round(row[0], row[3]); row[1] = SkMulDiv255Round(row[1], row[3]); row[2] = SkMulDiv255Round(row[2], row[3]); row[3] = 0xFF; } } bool SkJpegCodec::IsJpeg(SkStream* stream) { static const uint8_t jpegSig[] = { 0xFF, 0xD8, 0xFF }; char buffer[sizeof(jpegSig)]; return stream->read(buffer, sizeof(jpegSig)) == sizeof(jpegSig) && !memcmp(buffer, jpegSig, sizeof(jpegSig)); } bool SkJpegCodec::ReadHeader(SkStream* stream, SkCodec** codecOut, JpegDecoderMgr** decoderMgrOut) { // Create a JpegDecoderMgr to own all of the decompress information SkAutoTDelete<JpegDecoderMgr> decoderMgr(SkNEW_ARGS(JpegDecoderMgr, (stream))); // libjpeg errors will be caught and reported here if (setjmp(decoderMgr->getJmpBuf())) { return decoderMgr->returnFalse("setjmp"); } // Initialize the decompress info and the source manager decoderMgr->init(); // Read the jpeg header if (JPEG_HEADER_OK != jpeg_read_header(decoderMgr->dinfo(), true)) { return decoderMgr->returnFalse("read_header"); } if (NULL != codecOut) { // Recommend the color type to decode to const SkColorType colorType = decoderMgr->getColorType(); // Create image info object and the codec const SkImageInfo& imageInfo = SkImageInfo::Make(decoderMgr->dinfo()->image_width, decoderMgr->dinfo()->image_height, colorType, kOpaque_SkAlphaType); *codecOut = SkNEW_ARGS(SkJpegCodec, (imageInfo, stream, decoderMgr.detach())); } else { SkASSERT(NULL != decoderMgrOut); *decoderMgrOut = decoderMgr.detach(); } return true; } SkCodec* SkJpegCodec::NewFromStream(SkStream* stream) { SkAutoTDelete<SkStream> streamDeleter(stream); SkCodec* codec = NULL; if (ReadHeader(stream, &codec, NULL)) { // Codec has taken ownership of the stream, we do not need to delete it SkASSERT(codec); streamDeleter.detach(); return codec; } return NULL; } SkJpegCodec::SkJpegCodec(const SkImageInfo& srcInfo, SkStream* stream, JpegDecoderMgr* decoderMgr) : INHERITED(srcInfo, stream) , fDecoderMgr(decoderMgr) , fSwizzler(NULL) , fSrcRowBytes(0) {} /* * Return a valid set of output dimensions for this decoder, given an input scale */ SkISize SkJpegCodec::onGetScaledDimensions(float desiredScale) const { // libjpeg supports scaling by 1/1, 1/2, 1/4, and 1/8, so we will support these as well long scale; if (desiredScale > 0.75f) { scale = 1; } else if (desiredScale > 0.375f) { scale = 2; } else if (desiredScale > 0.1875f) { scale = 4; } else { scale = 8; } // Set up a fake decompress struct in order to use libjpeg to calculate output dimensions jpeg_decompress_struct dinfo; sk_bzero(&dinfo, sizeof(dinfo)); dinfo.image_width = this->getInfo().width(); dinfo.image_height = this->getInfo().height(); dinfo.global_state = DSTATE_READY; dinfo.num_components = 0; dinfo.scale_num = 1; dinfo.scale_denom = scale; jpeg_calc_output_dimensions(&dinfo); // Return the calculated output dimensions for the given scale return SkISize::Make(dinfo.output_width, dinfo.output_height); } /* * Checks if the conversion between the input image and the requested output * image has been implemented */ static bool conversion_possible(const SkImageInfo& dst, const SkImageInfo& src) { // Ensure that the profile type is unchanged if (dst.profileType() != src.profileType()) { return false; } // Ensure that the alpha type is opaque if (kOpaque_SkAlphaType != dst.alphaType()) { return false; } // Always allow kN32 as the color type if (kN32_SkColorType == dst.colorType()) { return true; } // Otherwise require that the destination color type match our recommendation return dst.colorType() == src.colorType(); } /* * Handles rewinding the input stream if it is necessary */ bool SkJpegCodec::handleRewind() { switch(this->rewindIfNeeded()) { case kCouldNotRewind_RewindState: return fDecoderMgr->returnFalse("could not rewind"); case kRewound_RewindState: { JpegDecoderMgr* decoderMgr = NULL; if (!ReadHeader(this->stream(), NULL, &decoderMgr)) { return fDecoderMgr->returnFalse("could not rewind"); } SkASSERT(NULL != decoderMgr); fDecoderMgr.reset(decoderMgr); return true; } case kNoRewindNecessary_RewindState: return true; default: SkASSERT(false); return false; } } /* * Checks if we can scale to the requested dimensions and scales the dimensions * if possible */ bool SkJpegCodec::scaleToDimensions(uint32_t dstWidth, uint32_t dstHeight) { // libjpeg can scale to 1/1, 1/2, 1/4, and 1/8 SkASSERT(1 == fDecoderMgr->dinfo()->scale_num); SkASSERT(1 == fDecoderMgr->dinfo()->scale_denom); jpeg_calc_output_dimensions(fDecoderMgr->dinfo()); while (fDecoderMgr->dinfo()->output_width != dstWidth || fDecoderMgr->dinfo()->output_height != dstHeight) { // Return a failure if we have tried all of the possible scales if (8 == fDecoderMgr->dinfo()->scale_denom || dstWidth > fDecoderMgr->dinfo()->output_width || dstHeight > fDecoderMgr->dinfo()->output_height) { return fDecoderMgr->returnFalse("could not scale to requested dimensions"); } // Try the next scale fDecoderMgr->dinfo()->scale_denom *= 2; jpeg_calc_output_dimensions(fDecoderMgr->dinfo()); } return true; } /* * Create the swizzler based on the encoded format */ void SkJpegCodec::initializeSwizzler(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes, const Options& options) { SkSwizzler::SrcConfig srcConfig = get_src_config(*fDecoderMgr->dinfo()); fSwizzler.reset(SkSwizzler::CreateSwizzler(srcConfig, NULL, dstInfo, dst, dstRowBytes, options.fZeroInitialized)); fSrcRowBytes = SkSwizzler::BytesPerPixel(srcConfig) * dstInfo.width(); } /* * Performs the jpeg decode */ SkCodec::Result SkJpegCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes, const Options& options, SkPMColor*, int*) { // Rewind the stream if needed if (!this->handleRewind()) { fDecoderMgr->returnFailure("could not rewind stream", kCouldNotRewind); } // Get a pointer to the decompress info since we will use it quite frequently jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); // Set the jump location for libjpeg errors if (setjmp(fDecoderMgr->getJmpBuf())) { return fDecoderMgr->returnFailure("setjmp", kInvalidInput); } // Check if we can decode to the requested destination if (!conversion_possible(dstInfo, this->getInfo())) { return fDecoderMgr->returnFailure("conversion_possible", kInvalidConversion); } // Perform the necessary scaling if (!this->scaleToDimensions(dstInfo.width(), dstInfo.height())) { fDecoderMgr->returnFailure("cannot scale to requested dims", kInvalidScale); } // Now, given valid output dimensions, we can start the decompress if (!jpeg_start_decompress(dinfo)) { return fDecoderMgr->returnFailure("startDecompress", kInvalidInput); } // Create the swizzler this->initializeSwizzler(dstInfo, dst, dstRowBytes, options); if (NULL == fSwizzler) { return fDecoderMgr->returnFailure("getSwizzler", kUnimplemented); } // This is usually 1, but can also be 2 or 4. // If we wanted to always read one row at a time, we could, but we will save space and time // by using the recommendation from libjpeg. const uint32_t rowsPerDecode = dinfo->rec_outbuf_height; SkASSERT(rowsPerDecode <= 4); // Create a buffer to contain decoded rows (libjpeg requires a 2D array) SkASSERT(0 != fSrcRowBytes); SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, fSrcRowBytes * rowsPerDecode)); JSAMPLE* srcRows[4]; uint8_t* srcPtr = srcBuffer.get(); for (uint8_t i = 0; i < rowsPerDecode; i++) { srcRows[i] = (JSAMPLE*) srcPtr; srcPtr += fSrcRowBytes; } // Ensure that we loop enough times to decode all of the rows // libjpeg will prevent us from reading past the bottom of the image uint32_t dstHeight = dstInfo.height(); for (uint32_t y = 0; y < dstHeight + rowsPerDecode - 1; y += rowsPerDecode) { // Read rows of the image uint32_t rowsDecoded = jpeg_read_scanlines(dinfo, srcRows, rowsPerDecode); // Convert to RGB if necessary if (JCS_CMYK == dinfo->out_color_space) { convert_CMYK_to_RGB(srcRows[0], dstInfo.width() * rowsDecoded); } // Swizzle to output destination for (uint32_t i = 0; i < rowsDecoded; i++) { fSwizzler->next(srcRows[i]); } // If we cannot read enough rows, assume the input is incomplete if (rowsDecoded < rowsPerDecode && y + rowsDecoded < dstHeight) { // Fill the remainder of the image with black. This error handling // behavior is unspecified but SkCodec consistently uses black as // the fill color for opaque images. If the destination is kGray, // the low 8 bits of SK_ColorBLACK will be used. Conveniently, // these are zeros, which is the representation for black in kGray. SkSwizzler::Fill(fSwizzler->getDstRow(), dstInfo, dstRowBytes, dstHeight - y - rowsDecoded, SK_ColorBLACK, NULL); // Prevent libjpeg from failing on incomplete decode dinfo->output_scanline = dstHeight; // Finish the decode and indicate that the input was incomplete. jpeg_finish_decompress(dinfo); return fDecoderMgr->returnFailure("Incomplete image data", kIncompleteInput); } } jpeg_finish_decompress(dinfo); return kSuccess; } /* * Enable scanline decoding for jpegs */ class SkJpegScanlineDecoder : public SkScanlineDecoder { public: SkJpegScanlineDecoder(const SkImageInfo& dstInfo, SkJpegCodec* codec) : INHERITED(dstInfo) , fCodec(codec) { fStorage.reset(fCodec->fSrcRowBytes); fSrcRow = static_cast<uint8_t*>(fStorage.get()); } SkImageGenerator::Result onGetScanlines(void* dst, int count, size_t rowBytes) override { // Set the jump location for libjpeg errors if (setjmp(fCodec->fDecoderMgr->getJmpBuf())) { return fCodec->fDecoderMgr->returnFailure("setjmp", SkImageGenerator::kInvalidInput); } // Read rows one at a time for (int y = 0; y < count; y++) { // Read row of the image uint32_t rowsDecoded = jpeg_read_scanlines(fCodec->fDecoderMgr->dinfo(), &fSrcRow, 1); if (rowsDecoded != 1) { SkSwizzler::Fill(dst, this->dstInfo(), rowBytes, count - y, SK_ColorBLACK, NULL); return SkImageGenerator::kIncompleteInput; } // Convert to RGB if necessary if (JCS_CMYK == fCodec->fDecoderMgr->dinfo()->out_color_space) { convert_CMYK_to_RGB(fSrcRow, dstInfo().width()); } // Swizzle to output destination fCodec->fSwizzler->setDstRow(dst); fCodec->fSwizzler->next(fSrcRow); dst = SkTAddOffset<void>(dst, rowBytes); } return SkImageGenerator::kSuccess; } SkImageGenerator::Result onSkipScanlines(int count) override { // Set the jump location for libjpeg errors if (setjmp(fCodec->fDecoderMgr->getJmpBuf())) { return fCodec->fDecoderMgr->returnFailure("setjmp", SkImageGenerator::kInvalidInput); } // Read rows but ignore the output for (int y = 0; y < count; y++) { jpeg_read_scanlines(fCodec->fDecoderMgr->dinfo(), &fSrcRow, 1); } return SkImageGenerator::kSuccess; } void onFinish() override { if (setjmp(fCodec->fDecoderMgr->getJmpBuf())) { SkCodecPrintf("setjmp: Error in libjpeg finish_decompress\n"); return; } jpeg_finish_decompress(fCodec->fDecoderMgr->dinfo()); } private: SkJpegCodec* fCodec; // unowned SkAutoMalloc fStorage; uint8_t* fSrcRow; // ptr into fStorage typedef SkScanlineDecoder INHERITED; }; SkScanlineDecoder* SkJpegCodec::onGetScanlineDecoder(const SkImageInfo& dstInfo, const Options& options, SkPMColor ctable[], int* ctableCount) { // Rewind the stream if needed if (!this->handleRewind()) { SkCodecPrintf("Could not rewind\n"); return NULL; } // Set the jump location for libjpeg errors if (setjmp(fDecoderMgr->getJmpBuf())) { SkCodecPrintf("setjmp: Error from libjpeg\n"); return NULL; } // Check if we can decode to the requested destination if (!conversion_possible(dstInfo, this->getInfo())) { SkCodecPrintf("Cannot convert to output type\n"); return NULL; } // Perform the necessary scaling if (!this->scaleToDimensions(dstInfo.width(), dstInfo.height())) { SkCodecPrintf("Cannot scale ot output dimensions\n"); return NULL; } // Now, given valid output dimensions, we can start the decompress if (!jpeg_start_decompress(fDecoderMgr->dinfo())) { SkCodecPrintf("start decompress failed\n"); return NULL; } // Create the swizzler this->initializeSwizzler(dstInfo, NULL, dstInfo.minRowBytes(), options); if (NULL == fSwizzler) { SkCodecPrintf("Could not create swizzler\n"); return NULL; } // Return the new scanline decoder return SkNEW_ARGS(SkJpegScanlineDecoder, (dstInfo, this)); }