/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Benchmark.h"
#include "SkPMFloat.h"
// Used to prevent the compiler from optimizing away the whole loop.
volatile uint32_t blackhole = 0;
// Not a great random number generator, but it's very fast.
// The code we're measuring is quite fast, so low overhead is essential.
static uint32_t lcg_rand(uint32_t* seed) {
*seed *= 1664525;
*seed += 1013904223;
return *seed;
}
// I'm having better luck getting these to constant-propagate away as template parameters.
template <bool kClamp, bool kWide>
struct PMFloatGetSetBench : public Benchmark {
PMFloatGetSetBench() {}
const char* onGetName() override {
switch (kClamp << 1 | kWide) {
case 0: return "SkPMFloat_get_1x";
case 1: return "SkPMFloat_get_4x";
case 2: return "SkPMFloat_clamp_1x";
case 3: return "SkPMFloat_clamp_4x";
}
SkFAIL("unreachable");
return "oh bother";
}
bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; }
void onDraw(const int loops, SkCanvas* canvas) override {
// Unlike blackhole, junk can and probably will be a register.
uint32_t junk = 0;
uint32_t seed = 0;
for (int i = 0; i < loops; i++) {
SkPMColor colors[4];
#ifdef SK_DEBUG
for (int i = 0; i < 4; i++) {
// Our SkASSERTs will remind us that it's technically required that we premultiply.
colors[i] = SkPreMultiplyColor(lcg_rand(&seed));
}
#else
// But it's a lot faster not to, and this code won't really mind the non-PM colors.
(void)lcg_rand(&seed);
colors[0] = seed + 0;
colors[1] = seed + 1;
colors[2] = seed + 2;
colors[3] = seed + 3;
#endif
SkPMFloat fa,fb,fc,fd;
if (kWide) {
SkPMFloat::From4PMColors(colors, &fa, &fb, &fc, &fd);
} else {
fa = SkPMFloat::FromPMColor(colors[0]);
fb = SkPMFloat::FromPMColor(colors[1]);
fc = SkPMFloat::FromPMColor(colors[2]);
fd = SkPMFloat::FromPMColor(colors[3]);
}
SkPMColor back[4];
switch (kClamp << 1 | kWide) {
case 0: {
back[0] = fa.round();
back[1] = fb.round();
back[2] = fc.round();
back[3] = fd.round();
} break;
case 1: SkPMFloat::RoundTo4PMColors(fa, fb, fc, fd, back); break;
case 2: {
back[0] = fa.roundClamp();
back[1] = fb.roundClamp();
back[2] = fc.roundClamp();
back[3] = fd.roundClamp();
} break;
case 3: SkPMFloat::RoundClampTo4PMColors(fa, fb, fc, fd, back); break;
}
for (int i = 0; i < 4; i++) {
junk ^= back[i];
}
}
blackhole ^= junk;
}
};
// Extra () help DEF_BENCH not get confused by the comma inside the <>.
DEF_BENCH(return (new PMFloatGetSetBench< true, true>);)
DEF_BENCH(return (new PMFloatGetSetBench<false, true>);)
DEF_BENCH(return (new PMFloatGetSetBench< true, false>);)
DEF_BENCH(return (new PMFloatGetSetBench<false, false>);)
struct PMFloatGradientBench : public Benchmark {
const char* onGetName() override { return "PMFloat_gradient"; }
bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; }
SkPMColor fDevice[100];
void onDraw(const int loops, SkCanvas*) override {
Sk4f c0 = SkPMFloat::FromARGB(255, 255, 0, 0),
c1 = SkPMFloat::FromARGB(255, 0, 0, 255),
dc = c1 - c0,
fx(0.1f),
dx(0.002f),
dcdx(dc*dx),
dcdx4(dcdx+dcdx+dcdx+dcdx);
for (int n = 0; n < loops; n++) {
Sk4f a = c0 + dc*fx + Sk4f(0.5f), // The +0.5f lets us call trunc() instead of get().
b = a + dcdx,
c = b + dcdx,
d = c + dcdx;
for (size_t i = 0; i < SK_ARRAY_COUNT(fDevice); i += 4) {
fDevice[i+0] = SkPMFloat(a).trunc();
fDevice[i+1] = SkPMFloat(b).trunc();
fDevice[i+2] = SkPMFloat(c).trunc();
fDevice[i+3] = SkPMFloat(d).trunc();
a += dcdx4;
b += dcdx4;
c += dcdx4;
d += dcdx4;
}
}
}
};
DEF_BENCH(return new PMFloatGradientBench;)