/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Benchmark.h" #include "SkPMFloat.h" // Used to prevent the compiler from optimizing away the whole loop. volatile uint32_t blackhole = 0; // Not a great random number generator, but it's very fast. // The code we're measuring is quite fast, so low overhead is essential. static uint32_t lcg_rand(uint32_t* seed) { *seed *= 1664525; *seed += 1013904223; return *seed; } // I'm having better luck getting these to constant-propagate away as template parameters. template <bool kClamp, bool kWide> struct PMFloatGetSetBench : public Benchmark { PMFloatGetSetBench() {} const char* onGetName() override { switch (kClamp << 1 | kWide) { case 0: return "SkPMFloat_get_1x"; case 1: return "SkPMFloat_get_4x"; case 2: return "SkPMFloat_clamp_1x"; case 3: return "SkPMFloat_clamp_4x"; } SkFAIL("unreachable"); return "oh bother"; } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } void onDraw(const int loops, SkCanvas* canvas) override { // Unlike blackhole, junk can and probably will be a register. uint32_t junk = 0; uint32_t seed = 0; for (int i = 0; i < loops; i++) { SkPMColor colors[4]; #ifdef SK_DEBUG for (int i = 0; i < 4; i++) { // Our SkASSERTs will remind us that it's technically required that we premultiply. colors[i] = SkPreMultiplyColor(lcg_rand(&seed)); } #else // But it's a lot faster not to, and this code won't really mind the non-PM colors. (void)lcg_rand(&seed); colors[0] = seed + 0; colors[1] = seed + 1; colors[2] = seed + 2; colors[3] = seed + 3; #endif SkPMFloat fa,fb,fc,fd; if (kWide) { SkPMFloat::From4PMColors(colors, &fa, &fb, &fc, &fd); } else { fa = SkPMFloat::FromPMColor(colors[0]); fb = SkPMFloat::FromPMColor(colors[1]); fc = SkPMFloat::FromPMColor(colors[2]); fd = SkPMFloat::FromPMColor(colors[3]); } SkPMColor back[4]; switch (kClamp << 1 | kWide) { case 0: { back[0] = fa.round(); back[1] = fb.round(); back[2] = fc.round(); back[3] = fd.round(); } break; case 1: SkPMFloat::RoundTo4PMColors(fa, fb, fc, fd, back); break; case 2: { back[0] = fa.roundClamp(); back[1] = fb.roundClamp(); back[2] = fc.roundClamp(); back[3] = fd.roundClamp(); } break; case 3: SkPMFloat::RoundClampTo4PMColors(fa, fb, fc, fd, back); break; } for (int i = 0; i < 4; i++) { junk ^= back[i]; } } blackhole ^= junk; } }; // Extra () help DEF_BENCH not get confused by the comma inside the <>. DEF_BENCH(return (new PMFloatGetSetBench< true, true>);) DEF_BENCH(return (new PMFloatGetSetBench<false, true>);) DEF_BENCH(return (new PMFloatGetSetBench< true, false>);) DEF_BENCH(return (new PMFloatGetSetBench<false, false>);) struct PMFloatGradientBench : public Benchmark { const char* onGetName() override { return "PMFloat_gradient"; } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } SkPMColor fDevice[100]; void onDraw(const int loops, SkCanvas*) override { Sk4f c0 = SkPMFloat::FromARGB(255, 255, 0, 0), c1 = SkPMFloat::FromARGB(255, 0, 0, 255), dc = c1 - c0, fx(0.1f), dx(0.002f), dcdx(dc*dx), dcdx4(dcdx+dcdx+dcdx+dcdx); for (int n = 0; n < loops; n++) { Sk4f a = c0 + dc*fx + Sk4f(0.5f), // The +0.5f lets us call trunc() instead of get(). b = a + dcdx, c = b + dcdx, d = c + dcdx; for (size_t i = 0; i < SK_ARRAY_COUNT(fDevice); i += 4) { fDevice[i+0] = SkPMFloat(a).trunc(); fDevice[i+1] = SkPMFloat(b).trunc(); fDevice[i+2] = SkPMFloat(c).trunc(); fDevice[i+3] = SkPMFloat(d).trunc(); a += dcdx4; b += dcdx4; c += dcdx4; d += dcdx4; } } } }; DEF_BENCH(return new PMFloatGradientBench;)