/*
* Copyright (C) 2009-2010 Francisco Jerez.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "nouveau_driver.h"
#include "nouveau_context.h"
#include "nouveau_gldefs.h"
#include "nv10_3d.xml.h"
#include "nouveau_util.h"
#include "nv10_driver.h"
#include "nv20_driver.h"
#define RC_IN_SHIFT_A 24
#define RC_IN_SHIFT_B 16
#define RC_IN_SHIFT_C 8
#define RC_IN_SHIFT_D 0
#define RC_IN_SHIFT_E 56
#define RC_IN_SHIFT_F 48
#define RC_IN_SHIFT_G 40
#define RC_IN_SOURCE(source) \
((uint64_t)NV10_3D_RC_IN_RGB_D_INPUT_##source)
#define RC_IN_USAGE(usage) \
((uint64_t)NV10_3D_RC_IN_RGB_D_COMPONENT_USAGE_##usage)
#define RC_IN_MAPPING(mapping) \
((uint64_t)NV10_3D_RC_IN_RGB_D_MAPPING_##mapping)
#define RC_OUT_BIAS NV10_3D_RC_OUT_RGB_BIAS_BIAS_BY_NEGATIVE_ONE_HALF
#define RC_OUT_SCALE_1 NV10_3D_RC_OUT_RGB_SCALE_NONE
#define RC_OUT_SCALE_2 NV10_3D_RC_OUT_RGB_SCALE_SCALE_BY_TWO
#define RC_OUT_SCALE_4 NV10_3D_RC_OUT_RGB_SCALE_SCALE_BY_FOUR
/* Make the combiner do: spare0_i = A_i * B_i */
#define RC_OUT_AB NV10_3D_RC_OUT_RGB_AB_OUTPUT_SPARE0
/* spare0_i = dot3(A, B) */
#define RC_OUT_DOT_AB (NV10_3D_RC_OUT_RGB_AB_OUTPUT_SPARE0 | \
NV10_3D_RC_OUT_RGB_AB_DOT_PRODUCT)
/* spare0_i = A_i * B_i + C_i * D_i */
#define RC_OUT_SUM NV10_3D_RC_OUT_RGB_SUM_OUTPUT_SPARE0
struct combiner_state {
struct gl_context *ctx;
int unit;
GLboolean premodulate;
/* GL state */
GLenum mode;
GLenum *source;
GLenum *operand;
GLuint logscale;
/* Derived HW state */
uint64_t in;
uint32_t out;
};
/* Initialize a combiner_state struct from the texture unit
* context. */
#define INIT_COMBINER(chan, ctx, rc, i) do { \
struct gl_tex_env_combine_state *c = \
ctx->Texture.Unit[i]._CurrentCombine; \
(rc)->ctx = ctx; \
(rc)->unit = i; \
(rc)->premodulate = c->_NumArgs##chan == 4; \
(rc)->mode = c->Mode##chan; \
(rc)->source = c->Source##chan; \
(rc)->operand = c->Operand##chan; \
(rc)->logscale = c->ScaleShift##chan; \
(rc)->in = (rc)->out = 0; \
} while (0)
/* Get the RC input source for the specified EXT_texture_env_combine
* source. */
static uint32_t
get_input_source(struct combiner_state *rc, int source)
{
switch (source) {
case GL_ZERO:
return RC_IN_SOURCE(ZERO);
case GL_TEXTURE:
return RC_IN_SOURCE(TEXTURE0) + rc->unit;
case GL_TEXTURE0:
return RC_IN_SOURCE(TEXTURE0);
case GL_TEXTURE1:
return RC_IN_SOURCE(TEXTURE1);
case GL_TEXTURE2:
return RC_IN_SOURCE(TEXTURE2);
case GL_TEXTURE3:
return RC_IN_SOURCE(TEXTURE3);
case GL_CONSTANT:
return context_chipset(rc->ctx) >= 0x20 ?
RC_IN_SOURCE(CONSTANT_COLOR0) :
RC_IN_SOURCE(CONSTANT_COLOR0) + rc->unit;
case GL_PRIMARY_COLOR:
return RC_IN_SOURCE(PRIMARY_COLOR);
case GL_PREVIOUS:
return rc->unit ? RC_IN_SOURCE(SPARE0)
: RC_IN_SOURCE(PRIMARY_COLOR);
default:
assert(0);
}
}
/* Get the RC input mapping for the specified texture_env_combine
* operand, possibly inverted or biased. */
#define INVERT 0x1
#define HALF_BIAS 0x2
static uint32_t
get_input_mapping(struct combiner_state *rc, int operand, int flags)
{
int map = 0;
if (is_color_operand(operand))
map |= RC_IN_USAGE(RGB);
else
map |= RC_IN_USAGE(ALPHA);
if (is_negative_operand(operand) == !(flags & INVERT))
map |= flags & HALF_BIAS ?
RC_IN_MAPPING(HALF_BIAS_NEGATE) :
RC_IN_MAPPING(UNSIGNED_INVERT);
else
map |= flags & HALF_BIAS ?
RC_IN_MAPPING(HALF_BIAS_NORMAL) :
RC_IN_MAPPING(UNSIGNED_IDENTITY);
return map;
}
static uint32_t
get_input_arg(struct combiner_state *rc, int arg, int flags)
{
int source = rc->source[arg];
int operand = rc->operand[arg];
/* Fake several unsupported texture formats. */
if (is_texture_source(source)) {
int i = (source == GL_TEXTURE ?
rc->unit : source - GL_TEXTURE0);
struct gl_texture_object *t = rc->ctx->Texture.Unit[i]._Current;
gl_format format = t->Image[0][t->BaseLevel]->TexFormat;
if (format == MESA_FORMAT_A8) {
/* Emulated using I8. */
if (is_color_operand(operand))
return RC_IN_SOURCE(ZERO) |
get_input_mapping(rc, operand, flags);
} else if (format == MESA_FORMAT_L8) {
/* Sometimes emulated using I8. */
if (!is_color_operand(operand))
return RC_IN_SOURCE(ZERO) |
get_input_mapping(rc, operand,
flags ^ INVERT);
} else if (format == MESA_FORMAT_XRGB8888) {
/* Sometimes emulated using ARGB8888. */
if (!is_color_operand(operand))
return RC_IN_SOURCE(ZERO) |
get_input_mapping(rc, operand,
flags ^ INVERT);
}
}
return get_input_source(rc, source) |
get_input_mapping(rc, operand, flags);
}
/* Bind the RC input variable <var> to the EXT_texture_env_combine
* argument <arg>, possibly inverted or biased. */
#define INPUT_ARG(rc, var, arg, flags) \
(rc)->in |= get_input_arg(rc, arg, flags) << RC_IN_SHIFT_##var
/* Bind the RC input variable <var> to the RC source <src>. */
#define INPUT_SRC(rc, var, src, chan) \
(rc)->in |= (RC_IN_SOURCE(src) | \
RC_IN_USAGE(chan)) << RC_IN_SHIFT_##var
/* Bind the RC input variable <var> to a constant +/-1 */
#define INPUT_ONE(rc, var, flags) \
(rc)->in |= (RC_IN_SOURCE(ZERO) | \
(flags & INVERT ? RC_IN_MAPPING(EXPAND_NORMAL) : \
RC_IN_MAPPING(UNSIGNED_INVERT))) << RC_IN_SHIFT_##var
static void
setup_combiner(struct combiner_state *rc)
{
switch (rc->mode) {
case GL_REPLACE:
INPUT_ARG(rc, A, 0, 0);
INPUT_ONE(rc, B, 0);
rc->out = RC_OUT_AB;
break;
case GL_MODULATE:
INPUT_ARG(rc, A, 0, 0);
INPUT_ARG(rc, B, 1, 0);
rc->out = RC_OUT_AB;
break;
case GL_ADD:
case GL_ADD_SIGNED:
if (rc->premodulate) {
INPUT_ARG(rc, A, 0, 0);
INPUT_ARG(rc, B, 1, 0);
INPUT_ARG(rc, C, 2, 0);
INPUT_ARG(rc, D, 3, 0);
} else {
INPUT_ARG(rc, A, 0, 0);
INPUT_ONE(rc, B, 0);
INPUT_ARG(rc, C, 1, 0);
INPUT_ONE(rc, D, 0);
}
rc->out = RC_OUT_SUM |
(rc->mode == GL_ADD_SIGNED ? RC_OUT_BIAS : 0);
break;
case GL_INTERPOLATE:
INPUT_ARG(rc, A, 0, 0);
INPUT_ARG(rc, B, 2, 0);
INPUT_ARG(rc, C, 1, 0);
INPUT_ARG(rc, D, 2, INVERT);
rc->out = RC_OUT_SUM;
break;
case GL_SUBTRACT:
INPUT_ARG(rc, A, 0, 0);
INPUT_ONE(rc, B, 0);
INPUT_ARG(rc, C, 1, 0);
INPUT_ONE(rc, D, INVERT);
rc->out = RC_OUT_SUM;
break;
case GL_DOT3_RGB:
case GL_DOT3_RGBA:
INPUT_ARG(rc, A, 0, HALF_BIAS);
INPUT_ARG(rc, B, 1, HALF_BIAS);
rc->out = RC_OUT_DOT_AB | RC_OUT_SCALE_4;
assert(!rc->logscale);
break;
default:
assert(0);
}
switch (rc->logscale) {
case 0:
rc->out |= RC_OUT_SCALE_1;
break;
case 1:
rc->out |= RC_OUT_SCALE_2;
break;
case 2:
rc->out |= RC_OUT_SCALE_4;
break;
default:
assert(0);
}
}
void
nv10_get_general_combiner(struct gl_context *ctx, int i,
uint32_t *a_in, uint32_t *a_out,
uint32_t *c_in, uint32_t *c_out, uint32_t *k)
{
struct combiner_state rc_a, rc_c;
if (ctx->Texture.Unit[i]._ReallyEnabled) {
INIT_COMBINER(RGB, ctx, &rc_c, i);
if (rc_c.mode == GL_DOT3_RGBA)
rc_a = rc_c;
else
INIT_COMBINER(A, ctx, &rc_a, i);
setup_combiner(&rc_c);
setup_combiner(&rc_a);
} else {
rc_a.in = rc_a.out = rc_c.in = rc_c.out = 0;
}
*k = pack_rgba_f(MESA_FORMAT_ARGB8888,
ctx->Texture.Unit[i].EnvColor);
*a_in = rc_a.in;
*a_out = rc_a.out;
*c_in = rc_c.in;
*c_out = rc_c.out;
}
void
nv10_get_final_combiner(struct gl_context *ctx, uint64_t *in, int *n)
{
struct combiner_state rc = {};
/*
* The final fragment value equation is something like:
* x_i = A_i * B_i + (1 - A_i) * C_i + D_i
* x_alpha = G_alpha
* where D_i = E_i * F_i, i one of {red, green, blue}.
*/
if (ctx->Fog.ColorSumEnabled || ctx->Light.Enabled) {
INPUT_SRC(&rc, D, E_TIMES_F, RGB);
INPUT_SRC(&rc, F, SECONDARY_COLOR, RGB);
}
if (ctx->Fog.Enabled) {
INPUT_SRC(&rc, A, FOG, ALPHA);
INPUT_SRC(&rc, C, FOG, RGB);
INPUT_SRC(&rc, E, FOG, ALPHA);
} else {
INPUT_ONE(&rc, A, 0);
INPUT_ONE(&rc, C, 0);
INPUT_ONE(&rc, E, 0);
}
if (ctx->Texture._EnabledUnits) {
INPUT_SRC(&rc, B, SPARE0, RGB);
INPUT_SRC(&rc, G, SPARE0, ALPHA);
} else {
INPUT_SRC(&rc, B, PRIMARY_COLOR, RGB);
INPUT_SRC(&rc, G, PRIMARY_COLOR, ALPHA);
}
*in = rc.in;
*n = log2i(ctx->Texture._EnabledUnits) + 1;
}
void
nv10_emit_tex_env(struct gl_context *ctx, int emit)
{
const int i = emit - NOUVEAU_STATE_TEX_ENV0;
struct nouveau_pushbuf *push = context_push(ctx);
uint32_t a_in, a_out, c_in, c_out, k;
nv10_get_general_combiner(ctx, i, &a_in, &a_out, &c_in, &c_out, &k);
/* Enable the combiners we're going to need. */
if (i == 1) {
if (c_out || a_out)
c_out |= 0x5 << 27;
else
c_out |= 0x3 << 27;
}
BEGIN_NV04(push, NV10_3D(RC_IN_ALPHA(i)), 1);
PUSH_DATA (push, a_in);
BEGIN_NV04(push, NV10_3D(RC_IN_RGB(i)), 1);
PUSH_DATA (push, c_in);
BEGIN_NV04(push, NV10_3D(RC_COLOR(i)), 1);
PUSH_DATA (push, k);
BEGIN_NV04(push, NV10_3D(RC_OUT_ALPHA(i)), 1);
PUSH_DATA (push, a_out);
BEGIN_NV04(push, NV10_3D(RC_OUT_RGB(i)), 1);
PUSH_DATA (push, c_out);
context_dirty(ctx, FRAG);
}
void
nv10_emit_frag(struct gl_context *ctx, int emit)
{
struct nouveau_pushbuf *push = context_push(ctx);
uint64_t in;
int n;
nv10_get_final_combiner(ctx, &in, &n);
BEGIN_NV04(push, NV10_3D(RC_FINAL0), 2);
PUSH_DATA (push, in);
PUSH_DATA (push, in >> 32);
}