/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_fs.h"
#include "brw_fs_cfg.h"
/** @file brw_fs_cfg.cpp
*
* Walks the shader instructions generated and creates a set of basic
* blocks with successor/predecessor edges connecting them.
*/
static fs_bblock *
pop_stack(exec_list *list)
{
fs_bblock_link *link = (fs_bblock_link *)list->get_tail();
fs_bblock *block = link->block;
link->remove();
return block;
}
fs_bblock::fs_bblock()
{
start = NULL;
end = NULL;
parents.make_empty();
children.make_empty();
}
void
fs_bblock::add_successor(void *mem_ctx, fs_bblock *successor)
{
successor->parents.push_tail(this->make_list(mem_ctx));
children.push_tail(successor->make_list(mem_ctx));
}
fs_bblock_link *
fs_bblock::make_list(void *mem_ctx)
{
return new(mem_ctx) fs_bblock_link(this);
}
fs_cfg::fs_cfg(fs_visitor *v)
{
mem_ctx = ralloc_context(v->mem_ctx);
block_list.make_empty();
num_blocks = 0;
ip = 0;
cur = NULL;
fs_bblock *entry = new_block();
fs_bblock *cur_if = NULL, *cur_else = NULL, *cur_endif = NULL;
fs_bblock *cur_do = NULL, *cur_while = NULL;
exec_list if_stack, else_stack, endif_stack, do_stack, while_stack;
fs_bblock *next;
set_next_block(entry);
entry->start = (fs_inst *)v->instructions.get_head();
foreach_list(node, &v->instructions) {
fs_inst *inst = (fs_inst *)node;
cur->end = inst;
/* set_next_block wants the post-incremented ip */
ip++;
switch (inst->opcode) {
case BRW_OPCODE_IF:
/* Push our information onto a stack so we can recover from
* nested ifs.
*/
if_stack.push_tail(cur_if->make_list(mem_ctx));
else_stack.push_tail(cur_else->make_list(mem_ctx));
endif_stack.push_tail(cur_endif->make_list(mem_ctx));
cur_if = cur;
cur_else = NULL;
/* Set up the block just after the endif. Don't know when exactly
* it will start, yet.
*/
cur_endif = new_block();
/* Set up our immediately following block, full of "then"
* instructions.
*/
next = new_block();
next->start = (fs_inst *)inst->next;
cur_if->add_successor(mem_ctx, next);
set_next_block(next);
break;
case BRW_OPCODE_ELSE:
cur->add_successor(mem_ctx, cur_endif);
next = new_block();
next->start = (fs_inst *)inst->next;
cur_if->add_successor(mem_ctx, next);
cur_else = next;
set_next_block(next);
break;
case BRW_OPCODE_ENDIF:
cur_endif->start = (fs_inst *)inst->next;
cur->add_successor(mem_ctx, cur_endif);
set_next_block(cur_endif);
if (!cur_else)
cur_if->add_successor(mem_ctx, cur_endif);
/* Pop the stack so we're in the previous if/else/endif */
cur_if = pop_stack(&if_stack);
cur_else = pop_stack(&else_stack);
cur_endif = pop_stack(&endif_stack);
break;
case BRW_OPCODE_DO:
/* Push our information onto a stack so we can recover from
* nested loops.
*/
do_stack.push_tail(cur_do->make_list(mem_ctx));
while_stack.push_tail(cur_while->make_list(mem_ctx));
/* Set up the block just after the while. Don't know when exactly
* it will start, yet.
*/
cur_while = new_block();
/* Set up our immediately following block, full of "then"
* instructions.
*/
next = new_block();
next->start = (fs_inst *)inst->next;
cur->add_successor(mem_ctx, next);
cur_do = next;
set_next_block(next);
break;
case BRW_OPCODE_CONTINUE:
cur->add_successor(mem_ctx, cur_do);
next = new_block();
next->start = (fs_inst *)inst->next;
if (inst->predicated)
cur->add_successor(mem_ctx, next);
set_next_block(next);
break;
case BRW_OPCODE_BREAK:
cur->add_successor(mem_ctx, cur_while);
next = new_block();
next->start = (fs_inst *)inst->next;
if (inst->predicated)
cur->add_successor(mem_ctx, next);
set_next_block(next);
break;
case BRW_OPCODE_WHILE:
cur_while->start = (fs_inst *)inst->next;
cur->add_successor(mem_ctx, cur_do);
set_next_block(cur_while);
/* Pop the stack so we're in the previous loop */
cur_do = pop_stack(&do_stack);
cur_while = pop_stack(&while_stack);
break;
default:
break;
}
}
cur->end_ip = ip;
make_block_array();
}
fs_cfg::~fs_cfg()
{
ralloc_free(mem_ctx);
}
fs_bblock *
fs_cfg::new_block()
{
fs_bblock *block = new(mem_ctx) fs_bblock();
return block;
}
void
fs_cfg::set_next_block(fs_bblock *block)
{
if (cur) {
assert(cur->end->next == block->start);
cur->end_ip = ip - 1;
}
block->start_ip = ip;
block->block_num = num_blocks++;
block_list.push_tail(block->make_list(mem_ctx));
cur = block;
}
void
fs_cfg::make_block_array()
{
blocks = ralloc_array(mem_ctx, fs_bblock *, num_blocks);
int i = 0;
foreach_list(block_node, &block_list) {
fs_bblock_link *link = (fs_bblock_link *)block_node;
blocks[i++] = link->block;
}
assert(i == num_blocks);
}