/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> * */ #include "brw_fs.h" #include "brw_fs_cfg.h" /** @file brw_fs_cfg.cpp * * Walks the shader instructions generated and creates a set of basic * blocks with successor/predecessor edges connecting them. */ static fs_bblock * pop_stack(exec_list *list) { fs_bblock_link *link = (fs_bblock_link *)list->get_tail(); fs_bblock *block = link->block; link->remove(); return block; } fs_bblock::fs_bblock() { start = NULL; end = NULL; parents.make_empty(); children.make_empty(); } void fs_bblock::add_successor(void *mem_ctx, fs_bblock *successor) { successor->parents.push_tail(this->make_list(mem_ctx)); children.push_tail(successor->make_list(mem_ctx)); } fs_bblock_link * fs_bblock::make_list(void *mem_ctx) { return new(mem_ctx) fs_bblock_link(this); } fs_cfg::fs_cfg(fs_visitor *v) { mem_ctx = ralloc_context(v->mem_ctx); block_list.make_empty(); num_blocks = 0; ip = 0; cur = NULL; fs_bblock *entry = new_block(); fs_bblock *cur_if = NULL, *cur_else = NULL, *cur_endif = NULL; fs_bblock *cur_do = NULL, *cur_while = NULL; exec_list if_stack, else_stack, endif_stack, do_stack, while_stack; fs_bblock *next; set_next_block(entry); entry->start = (fs_inst *)v->instructions.get_head(); foreach_list(node, &v->instructions) { fs_inst *inst = (fs_inst *)node; cur->end = inst; /* set_next_block wants the post-incremented ip */ ip++; switch (inst->opcode) { case BRW_OPCODE_IF: /* Push our information onto a stack so we can recover from * nested ifs. */ if_stack.push_tail(cur_if->make_list(mem_ctx)); else_stack.push_tail(cur_else->make_list(mem_ctx)); endif_stack.push_tail(cur_endif->make_list(mem_ctx)); cur_if = cur; cur_else = NULL; /* Set up the block just after the endif. Don't know when exactly * it will start, yet. */ cur_endif = new_block(); /* Set up our immediately following block, full of "then" * instructions. */ next = new_block(); next->start = (fs_inst *)inst->next; cur_if->add_successor(mem_ctx, next); set_next_block(next); break; case BRW_OPCODE_ELSE: cur->add_successor(mem_ctx, cur_endif); next = new_block(); next->start = (fs_inst *)inst->next; cur_if->add_successor(mem_ctx, next); cur_else = next; set_next_block(next); break; case BRW_OPCODE_ENDIF: cur_endif->start = (fs_inst *)inst->next; cur->add_successor(mem_ctx, cur_endif); set_next_block(cur_endif); if (!cur_else) cur_if->add_successor(mem_ctx, cur_endif); /* Pop the stack so we're in the previous if/else/endif */ cur_if = pop_stack(&if_stack); cur_else = pop_stack(&else_stack); cur_endif = pop_stack(&endif_stack); break; case BRW_OPCODE_DO: /* Push our information onto a stack so we can recover from * nested loops. */ do_stack.push_tail(cur_do->make_list(mem_ctx)); while_stack.push_tail(cur_while->make_list(mem_ctx)); /* Set up the block just after the while. Don't know when exactly * it will start, yet. */ cur_while = new_block(); /* Set up our immediately following block, full of "then" * instructions. */ next = new_block(); next->start = (fs_inst *)inst->next; cur->add_successor(mem_ctx, next); cur_do = next; set_next_block(next); break; case BRW_OPCODE_CONTINUE: cur->add_successor(mem_ctx, cur_do); next = new_block(); next->start = (fs_inst *)inst->next; if (inst->predicated) cur->add_successor(mem_ctx, next); set_next_block(next); break; case BRW_OPCODE_BREAK: cur->add_successor(mem_ctx, cur_while); next = new_block(); next->start = (fs_inst *)inst->next; if (inst->predicated) cur->add_successor(mem_ctx, next); set_next_block(next); break; case BRW_OPCODE_WHILE: cur_while->start = (fs_inst *)inst->next; cur->add_successor(mem_ctx, cur_do); set_next_block(cur_while); /* Pop the stack so we're in the previous loop */ cur_do = pop_stack(&do_stack); cur_while = pop_stack(&while_stack); break; default: break; } } cur->end_ip = ip; make_block_array(); } fs_cfg::~fs_cfg() { ralloc_free(mem_ctx); } fs_bblock * fs_cfg::new_block() { fs_bblock *block = new(mem_ctx) fs_bblock(); return block; } void fs_cfg::set_next_block(fs_bblock *block) { if (cur) { assert(cur->end->next == block->start); cur->end_ip = ip - 1; } block->start_ip = ip; block->block_num = num_blocks++; block_list.push_tail(block->make_list(mem_ctx)); cur = block; } void fs_cfg::make_block_array() { blocks = ralloc_array(mem_ctx, fs_bblock *, num_blocks); int i = 0; foreach_list(block_node, &block_list) { fs_bblock_link *link = (fs_bblock_link *)block_node; blocks[i++] = link->block; } assert(i == num_blocks); }